DIGESTION MECHANISM OF VARIOUS NUTRIENTS IN POULTRY

By

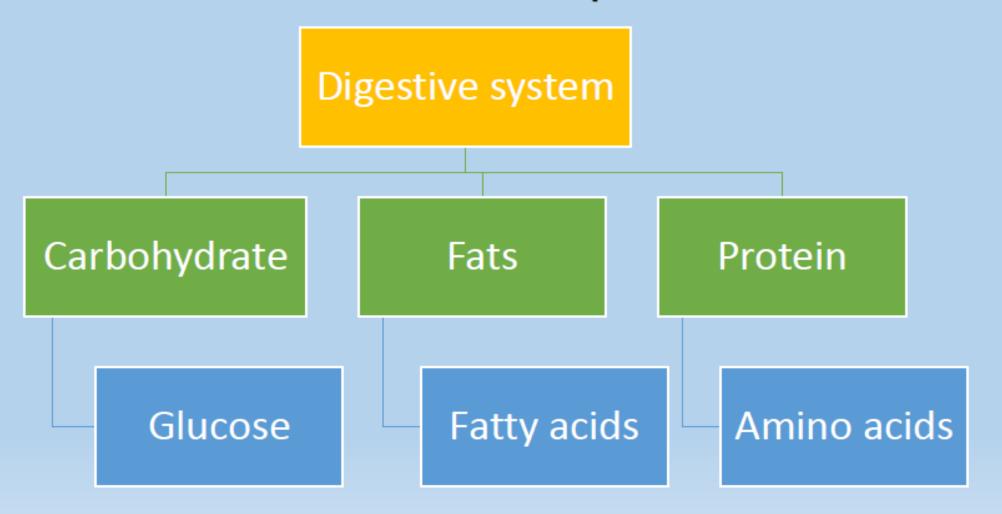
Dr .Ahmed T. Taha

Dept. of animal production / college of agriculture /Tikrit university

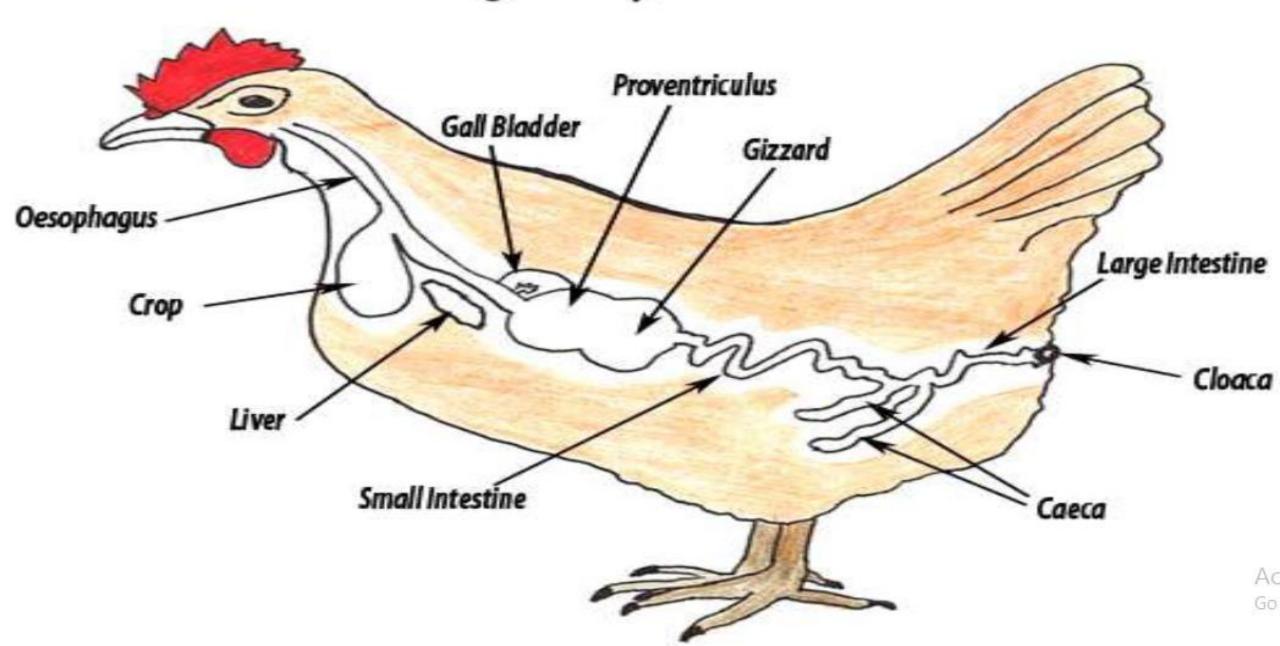
Digestion

1

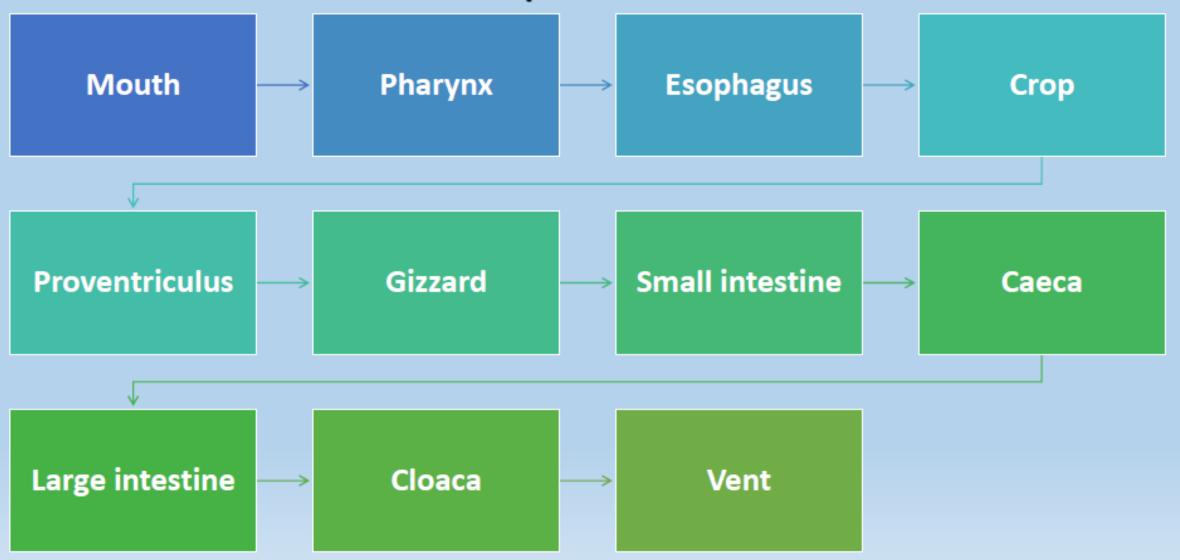
Mechanical and chemical breaking down

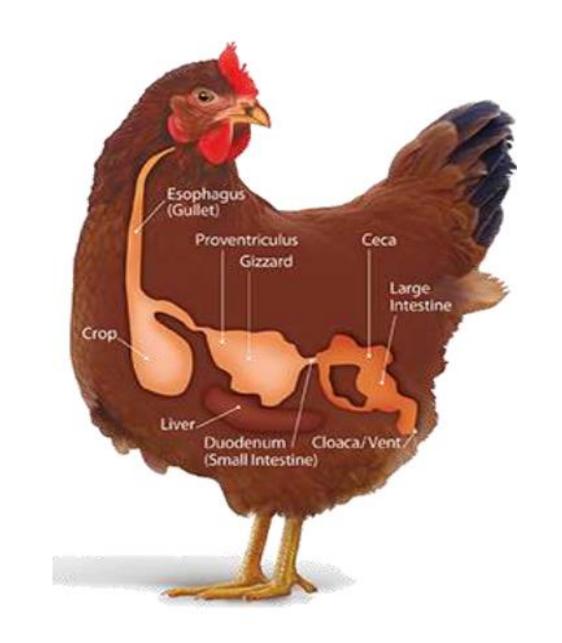

2

food into smaller components


3

 to a form that can be absorbed, for instance, into a blood stream


Responsible for the breakdown of complex non absorbable components like;

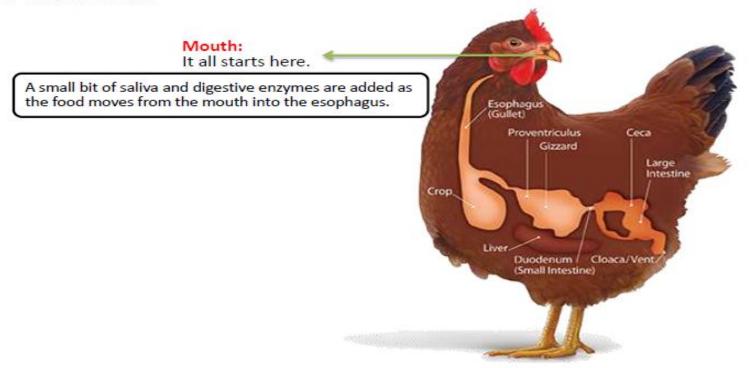


The Digestive System of a Chicken

Digestive system is divided into following parts

Mouth

- Saliva and digestive enzymes are added
- Does not have teeth to chew its feed

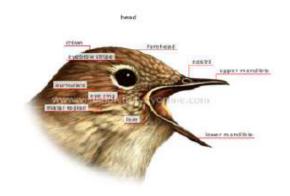

Pharynx

- Common passage way for feed and air
- It is divided into two parts: Esophagus; Larynx

Esophagus

- Transports food from the mouth to the stomach
- Major secretion is mucous

Organs and Functions The Mouth

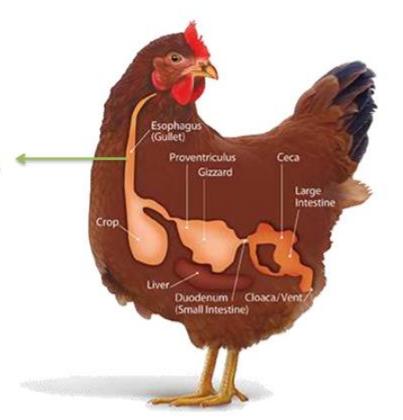


Mouth

- Saliva and digestive enzymes are added
- Does not have teeth to chew its feed

Mouth (beak) is made up of:

- 1. Upper mandible
 - attached with skull
 - non-movable part of beak
- 2. Lower mandible
 - It is the movable part of beak
- The chicken does not have teeth to chew its feed.


- The roof of mouth is made up of hard palate that is divided by a long narrow slit in the center that is opened to the nasal passage.
- The soft palate is absent in chicken.

The Esophagus

Esophagus:

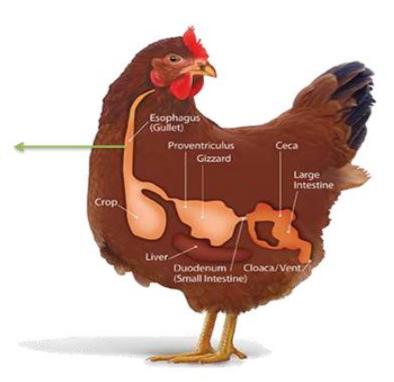
Transports food from the mouth to the stomach.

Esophagus

- Transports food from the mouth to the stomach
- Major secretion is mucous

Description

Esophagus is a tube like structure that extends from mouth to Proventriculus.


Functions

- 1. It helps carry feed from mouth towards Proventriculus.
- 2. Secrets mucous for lubrication.

The Esophagus

Esophagus:

Transports food from the mouth to the stomach.

Crop

- Responsible for the storage of feed
- Little digestion with salivary amylase

PROVENTRICULUS

- Glandular stomach or true stomach
- Responsible for the production of gastric juice

Gizzard

- Muscular Stomach or Ventriculus
- Crushing and grinding the feed particle

Gizzard

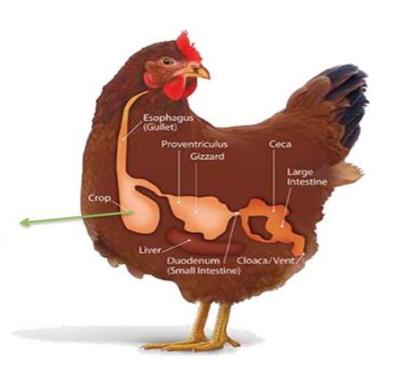
- Muscular Stomach or Ventriculus
- Crushing and grinding the feed particle

Gizzard

Description

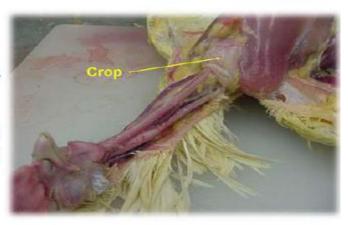
- Also called muscular stomach or ventriculus.
- ➤ It is made up of two pairs of powerful muscles capable of crushing and grinding the feed particle, which act as the bird's teeth.
- (The tunica muscularis of gizzard is made up of two layers of smooth muscles, inner circular & outer longitudinal)

Functions


- It performs powerful muscular contraction, which ultimately leads to crushing and grinding of feed particles.
- 2. This process is aided by the presence of grit or rocks present in the gizzard.
- The gizzard performs 2-5 contractions per minute according to the consistency of the feed particle!!!!!!

The Crop

Crop:


A pouch in the esophagus used to store food temporarily before moving it on to the stomach.

Feed can remain for up to 12 hours

Description

- Crop is the extension of esophagus located in the neck region.
- Cropectomy has no effect on growth rate of ad-libitum fed chickens.

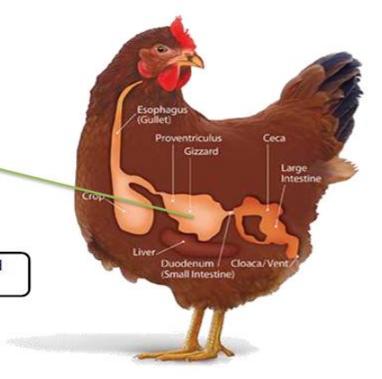
Functions:

- Storage of feed, so, when the proventriculus or gizzard is empty the feed by pass the crop.
- Little digestion takes place with the action of salivary amylase.
 - Amylase activity at this site comes from either salivary secretions, intestinal reflux, or plant and/or bacterial sources.
 - Starch is hydrolyzed within the crop where it can either be absorbed, converted to alcohol, lactic or other acids

Proventriculus

Stomach:

Principally the organ where food is broken into smaller units. It has two parts:


1. Proventriculus

For storage

2. Gizzard

Is a muscular part of the stomach that uses grit to grind grains and fiber into smaller particles.

Digestive enzymes are added to the mix and physical grinding of the food occurs.

Description

- Also called glandular stomach or true stomach.
- ➤ It is a specialized enlargement of the gullet just before entry into the gizzard.

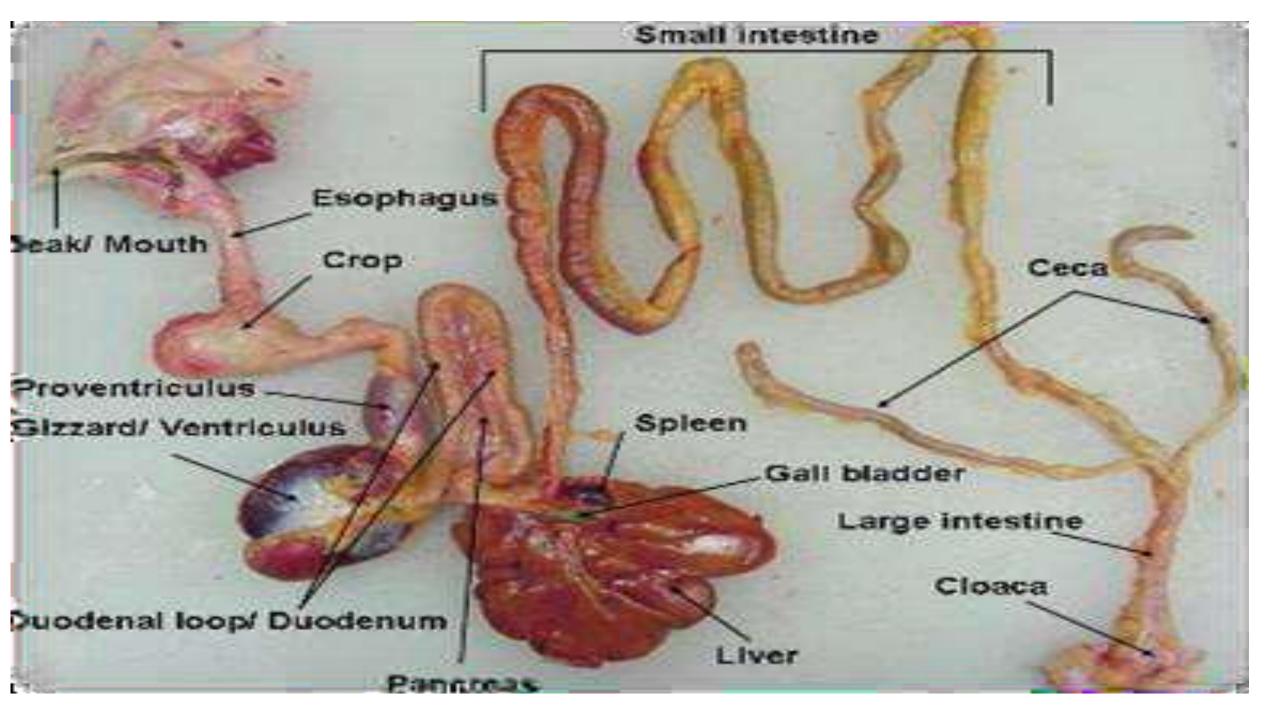
PROVENTRICULUS

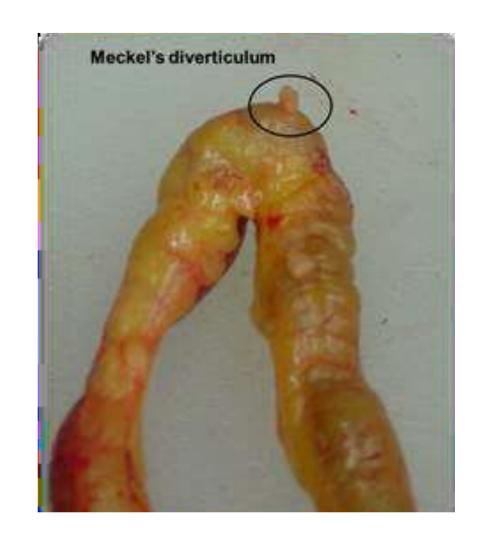
- Glandular stomach or true stomach
- Responsible for the production of gastric juice

Functions:

- Production of gastric juice;
 - Gastric juice is made up of the proenzyme known as pepsinogen and hydrochloric acid, both are produced by oxyntico-peptic cells.
 - Gastric juice produced in response to protein content in diet.
 - Acid secretion of chickens is high relative to mammals.
 - Amylolysis occurs in the crop, it is not evident in the ventriculus.

Small intestine


- 3 parts. 1-Duodenum 2-Jejunum 3-Ileum
- Digestion by intestinal juice, pancreatic juice & bile


Caeca

- 2 blind pouches b/w small intestine & large intestine
- Digestion with the help of bacterial action

Large Intestine

- Smaller as compared to small intestine and caecum
- Maintain water balance by water absorption.

Cloaca

- Bulbous/enlarged area located at the end of large intestine
- Common sewer

Vent

- External opening of the cloaca
- Its size is variable

ACCESSORY DIGESTIVE GLANDS

Salivary Glands

Pancreas

Liver

Salivary glands

Pancreas

Liver

Production of saliva

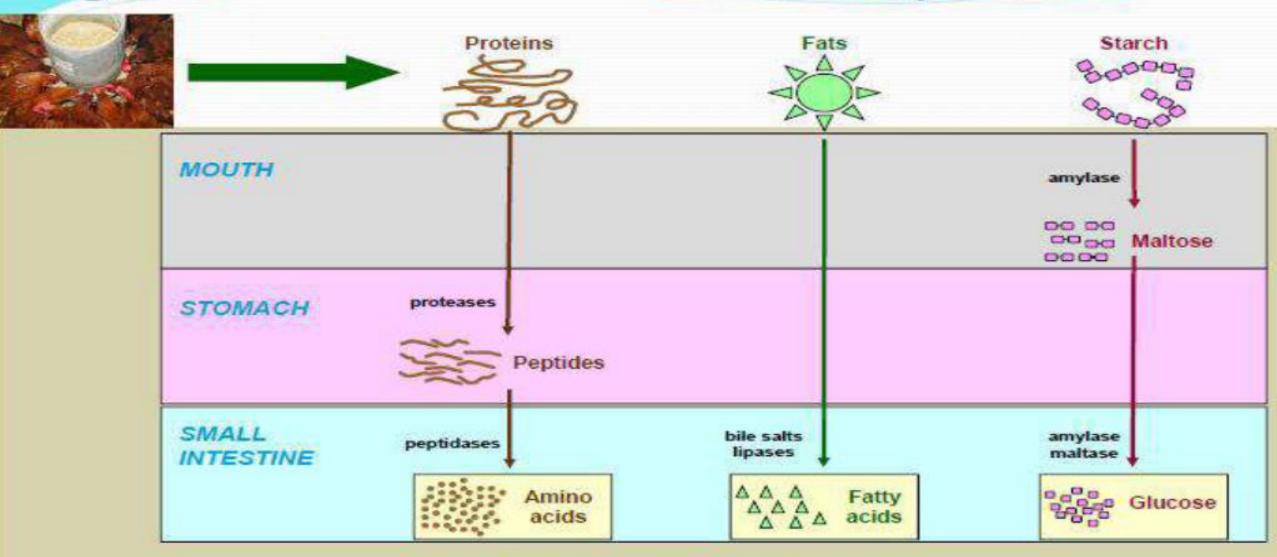
Produces a pancreatic juice

Detoxification
Store house

Secretions ranges from 7 to 25 ml Proteolytic
Lipolytic
CH2O splitting
Nucleolytic

Activates and inactivates protein & peptide hormone

DIGESTIVE ENZYME ACTIVITY


Location	<u>ph</u>	Enzyme	Substrate	Product	
Mouth	7.0-7.5	Saliva	Lubricates feed		
		(Amylase)	Starch Dextrin		
			Dextrin	Glucose	
Crop	4.5	Mucus	Soften feed		
Gizzard and	2.5	HCL	Lower digesta pH,		
Proventriculus			initiates protein		
			cleavage		
		Pepsin	proteins	Polypeptides	
		Lipase	triglyceride	Fatty acids,	
				monoglycerides	
Duodenum	6.0-6.8	Amylase	Starch, dextrin	Maltose, glucose	
		Trypsin,	Proteins, peptides	Peptides and amino	
		chymotrypsin and		acids	
		esterase		Λ	
		Carboxypeptidases	Peptides collagen	Amino acids, G	
		collagenase		peptides	

et e t

DIGESTIVE ENZYME ACTIVITY

Duodenum		Lipase	Fats	Fatty acids,	
				monoglycerides,	
				diglycerides	
		Cholesterol	Cholesterol esters	rs Fatty acids,	
		esterase		cholesterol	
Jejunum	5.8-6.8	Maltase and	Maltose, isomaltose	Glucose	
		isomaltase			
		Sucrase	sucrose	Glucose, fructose	
		Lactase	lactase	Glucose, Galactose	
		Polynucleotidase	Nucleic acids	Mononucleotides	
		Peptidases	peptides	mononucleotides	
Ceca	5.7-5.9	Microbial activity	Cellulose, Volatile fatty ac		
			polysaccharides	Vit. K, B vitamins	
			Starches, sugars	G	

Digestive Process in Poultry

= main site of absorption

Carbohydrates

Digestion Mechanism of Carbohydrates

- Amylase enzyme which initiates starch digestion
- Mostly digestion occur in jejunum

- Alpha amylase hydrolysed 1,4 linkages on both sides
- Maltose is cleaved by maltase and isomaltase

- Sucrase hydrolyses sucrose
- Milk derived CH₂O are hydrolysed by lactase to glucose and glactose

Gross Energy digestible energy metabolizable energy of starch and sugars

Carbohydrate	Gross	Digestible	Metabolizable
Starch	3750	3550	3350
Glucose	3430	3400	3330
Maltose	3600	3390	3250
Fructose	3000	2875	2750
Sucrose	3950	3875	3750

Proteins

Digestion Mechanism of Proteins

No digestion in mouth & Proventriculus is 1st site

HCL & Pepsin play major role in digestion

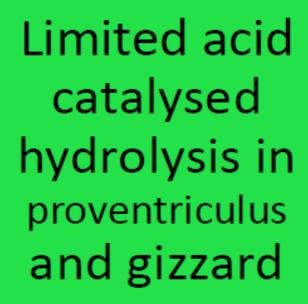
Proventriculus & gizzard major sites

Most protein in the feed are quite resistant to attack by enzymes

Must be denatured

structure of protein
Is broken into single
structure

3D


Normal crude protein contents and digestibilities of common poultry feed stuff

Feed stuff	СР	Ilial digestibility (%)			
		СР	lys	met	cys
Corn	18	82-86	81	91	85
Wheat	12	78-82	81	87	87
Barley	10	70-82	78	79	81
sorghum	10	62-72	78	89	83
Peanut	49	88-91	83	88	78
meal					
Soybean	46	83-87	91	92	82
meal					
Cottonseed	43	61-76	67	73	73
meal					

Fats & fatty acids

Digestion mechanism of fats and fatty acids

No hydrolysis in the upper elementary tract

Digestion & absorption usually occur in small intestine

By lipase

Digestion mechanism of fats and fatty acids

Secretion from very early age, this activity increases very rapidly from 1st 3 weeks

Fat digestion is enhanced by emulsification

Bile salts & lipase play major role

Digestibility values of various fatty acid

Fatty acids	no. of carbon	Digestibility (%)		
		3-4 weeks	>8 weeks	
Louric	12:0	65	-	
Myristic	14:0	25	29	
Palmitic	16:0	2	12	
Stearic	18:0	0	4	
Oleic	18:1	88	94	
Linoleic	18:2	91	95	

Vitamins

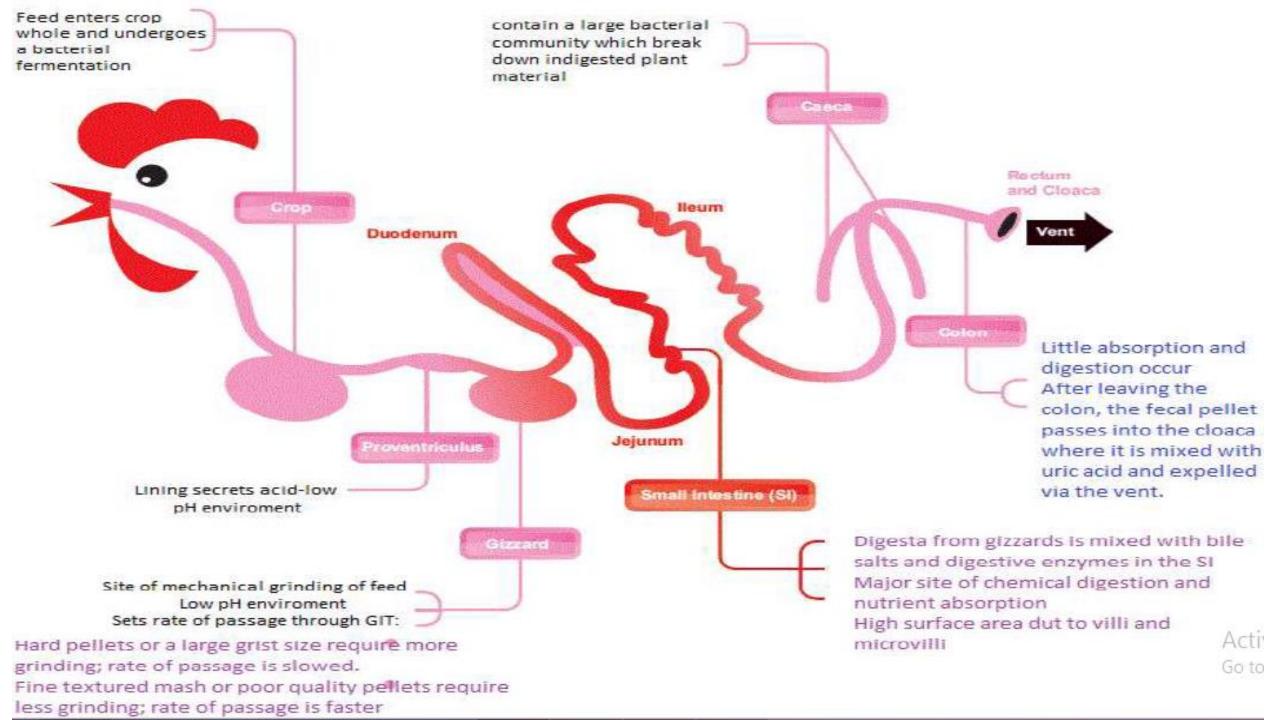
Digestion mechanism of Vitamins

Fat soluble vitamins undergo similar digestive process as do dietary triglycerides, in the small intestine.

Digestion mechanism of Vitamins

The process includes emulsification which is enhanced by bile salts, action of pancreatic lipase.

Digestion mechanism of Vitamins


Digestion of vitamin A and E involves the action of retinyl and tocopherol esterases respectively.

Digestibilities of Vitamins

— •			•	• •	•
Diac	estibi	III TV	Ot W	utar	ninc
DIEC	เวเเบเ	IIILV	UI V	ıtaı	11113
_ 0					

Digestibility %

Vit. A	40-70
Vit. D3	50-66
Vit. E	10-25
Vit. K	50%
Niacin	85%

Mechanism of Hunger

There are two systems or centers located in the brain or liver which controls the feeding behavior of animals

- 1. Satiety center
- 2. Appetite center

Satiety Center

- It is located in the liver of the chicken, while in other animals it is located in the brain.
- > This center is also known as glucostatiey Centre.
- ➤ Level of glucose in the blood activates and stimulates the satiety center leading to cessation of feed in take.

Appetite Center

- > The stimulation of this Centre results in feed intake or hunger.
- This centre is stimulated by low concentration of glucose in the blood. This is located in the brain.