التركيب الوراثي Genotype: وهو ما يحتويه الفرد من جينات أو عوامل استلمها من أبويه والتي تعطى لذلك الفرد شكله المظهري.

التركيب المظهري Phenotype: مجموع صفات الفرد التي يمكن ملاحظتها وقياسها في معظم الأحيان والناتجة من تعامل (تفاعل) التركيب الوراثي مع المحيط السائد .

كيفية حساب عدد التراكيب الوراثية التي يمكن الحصول عليها من مجموع الأليلات لصفة معينة:

N(N+1)/2: utilizing in N(N+1)

N = عدد الأليلات لكل صفة .

مثال / هناك أليلين تتحكم في في صفة الطول A_1, A_2 (أو A_1, A_2) ما هي عدد التراكيب الوراثية المحتملة للأبناء والتي يمكن الحصول عليها من هذه الأليلات ؟

الحل

$$N(N+1)/2$$

$$6/2 = 3$$

إذا يمكن الحصول على ثلاثة تراكيب وراثية

 A_1A_1 , A_1A_2 , A_2A_2

AA , AB , BB

AA , Aa , aa

مثال / في بروتين البيتا لاكتوكلوبيولين في الحليب يوجد أربعة أليلات تتحكم في هذه الصفة A_1 , A_2 , A_3 , A_4

الحل

$$N(N+1)/2$$

$$4(4+1)/2$$

$$20 / 2 = 10$$

إذا يمكن الحصول على عشرة تراكيب وراثية

 A_1A_1 , A_1A_2 , A_1A_3 , A_1A_4

 A_2A_2 , A_2A_3 , A_2A_4

 A_3A_3 , A_3A_4

 A_4A_4

مثال / إذا علمت أن هنالك ثلاثة أليلات تتحكم في صفة النمو في الحيوان الأليل A_1 يساهم بـ 50 غم زيادة وزنيه ، والاليل A_2 يساهم بـ 50 غم زيادة وزنيه ، والاليل A_3 يساهم بـ 5 غم زيادة وزنيه ، والاليل الوراثية المحتملة وما هو مقدار المساهمة لكل تركيب وراثي متوقع من الزيادة الوزنية اليومية .

الحل

$$N(N+1)/2$$

$$3(3+1)/2$$

12 / 2 = 6

إذا يمكن الحصول على ستة تراكيب وراثية

 A_1A_1 , A_1A_2 , A_1A_3

 A_2A_2 , A_2A_3

 A_3A_3

Genotype	First Allele	Second Allele	Breeding Value
A_1A_1	50 gm	50 gm	100 gm
A_1A_2	50 gm	30 gm	80 gm
A_1A_3	50 gm	5 gm	55 gm
A_2A_2	30 gm	30 gm	60 gm
A_2A_3	30 gm	5 gm	35 gm
A_3A_3	5 gm	5 gm	10 gm

كيفية حساب تكرار التركيب الوراثي:

10 15 25AA Aa aa p^2 2pq q^2 P H Q

(P_AA) P أو p^2 أو AA ئارار التركيب الوراثي السائد

عدد الأفراد التي تحمل التركيب الوراثي السائد PAA = ______

العدد الكلى للأفراد

$$P_{AA} = \frac{10}{50} = 0.2$$

(H_{Aa}) H و 2pq ويرمز له Aa ويرمز التركيب الوراثي الخليط 2

عدد الأفراد التي تحمل التركيب الوراثي الخليط

____ = H_{Aa}

العدد الكلي للأفراد

$$H_{Aa} = \frac{15}{50} = 0.3$$

(Q_{aa}) Q أو q^2 ويرمز له q^2 خرار التركيب الوراثي المتنحي q^2

عدد الأفراد التي تحمل التركيب الوراثي المتنحي

= Q_{aa}

العدد الكلي للأفراد

$$Q_{aa} = \frac{25}{50} = 0.5$$

1 = 1 مجموع تكرار التركيب الوراثي

2- تكرار التراكيب الوراثية لا تتجاوز الواحد

$$P^2 + 2pq + q^2 = 1$$

$$P + Q + H = 1$$

$$0.2 + 0.3 + 0.5 = 1$$