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Computation and Use of Expected Mean
Squares in Analysis of Variance

RONALD D. SNEE

E. I. du Pont de Nemours and Company, Inc., Wilmington, Delaware 19898

The available procedures for the computation and use of expected mean squares (EMS) in analysis
of variance are reviewed. The discussion is tutorial in nature and includes algorithms for EMS computa-
tion, the selection of appropriate error terms in constructing F tests for the significance of factor effects,
the estimation of variance components, synthesized mean squares and associated degrees of freedom
and approximate F tests. Emphasis is on practical applications. Examples of both balanced and un-

balanced designs are presented.

Introduction

NALYSIS of variance (ANOVA) is a method of
A_ data analysis which is commonly used to test
the significance of factor effects and to estimate
variance components, i.e., the amount of the vari-
ability in the observations which can be attributed to
the various sources of variability being studied.
Variance components are particularly useful in
designing sampling plans to monitor various product
properties and in establishing quality control pro-
cedures.

When an ANOVA table has been constructed,
one must refer to the expected values of the mean
squares (EMS) in order to determine

(i) which mean squares should be compared to
test the significance of the factor effects,
and

(ii) which linear combinations of the observed
mean squares should be formed to estimate
the variance components.

The objective of this paper is to present a tutorial
discussion of the computation and use of expected
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mean squares in ANOVA. Emphasis is on practical
applications. A review of the available procedures
and illustrative examples are included.

Expected Mean Square Computation

The data in Table 1 are the results of a 4 X 3
cross classification design with duplicate observa-
tions obtained at each of the 4-3 = 12 treatment
combinations for a total of 24 observations. The
ANOVA for these data is given below.

ANOVA TABLE

Source R e
Total 23 300

A 3 120 40

B 2 48 24

AB [ 84 14

Duplicates 12 48 4

After an ANOVA table has been constructed, the
EMS are examined to determine which F tests
should be performed to test hypotheses concerning
the sources of variation in the ANOVA table (i.e.,
the EMS indicate the appropriate error term for
each source of variation). If A is a source of interest,
then the numerator of the F ratio is the 4 mean
square (MS,) and the denominator of the F ratio
is a mean square that has the same expected value
as MS, when A is assumed to have no effect
(Ho: 0% = 0).

An EMS is of the form
E(MS) = ki + kot + -+« + kyo?

Yol. 6, No. 3, July 1974
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TABLE 1. Two Factor Crossed Design
PRODUCTION RATES (CODED) FOR AN EXPERIMENT IN A CATALYST PLANT *

FACTOR A FACTOR B CATALYST

REAGENT [ c [
T e = 1 .

R, 4 1 5

6 9

R 6 13 9

3 4 15 7

R, 13 15 13

15 9 13

R 12 12 7

4 12 14 9

* See Reference (23)

where F is the expected value operator, M S is the
observed mean square, the ks are coefficients to
be determined and the ¢%’s are variance components
of the various sources of variation being studied.
If ki = 0, then o7 is not included in the EMS. The
ks are funetions of

(i) the experimental design,
(ii) size of the various populations being

sampled,

(iil) size of the sample drawn from the popula-
tions, and

(iv) the sampling pattern—balanced or un-
balanced.

An important consideration is whether the design
is balanced or unbalanced. The computation of the
EMS for the balanced designs (crossed, nested,
partially crossed and nested) is deseribed in the
classic paper by Cornfield and Tukey [3]. These pro-
cedures are also given in statistics texts by Bennett
and Franklin [26], Hicks [28], and Scheffé [30].
Algorithms for the computation of EMS for un-
balanced nested designs have been presented by
Anderson and Baneroft [25], Mahamunulu [17], and
Gaylor and Hartwell [9]. Anderson and Bancroft’s
algorithm, which was originally published by Gan-
guli [7], and Mahamunulu’s procedure are applicable
for infinite populations only. Gaylor and Hartwell’s
algorithm is applicable to both finite and infinite
populations. It should be noted that, while Maha-
munulu discusses the three-way nested design, his
results can be generalized to nested designs with any
number of factors. Gaylor, Lucas, and Anderson
[11] have discussed the computation of the EMS
for unbalanced crossed designs. Hartley [13] and
Rao [18] have also discussed the computation of
EMS for unbalanced designs. From this review of
the literature, it is apparent that there are several
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algorithms available for the computation of EMS.
It is this author’s opinion that the following al-
gorithms are most useful.

Design Algorithm

Cornfield & Tukey [3, 26, 28,
30]

Unbalanced Nested Gaylor & Hartwell [9]

Other Unbalanced Designs Gaylor, Lucas, & Anderson

[11]

Balanced

It should be noted that in the case of infinite
populations, Gaylor and Hartwell’s algorithm re-
duces to the procedure described by Ganguli [7],
Anderson and Bancroft [25], and Mahamunulu [17].
In the following sections, these procedures will be
illustrated in the computation of EMS for the
balanced crossed design discussed earlier and an
unbalanced nested design. The reader is referred to
the paper by Gaylor, Lucas, and Anderson for an
example of an unbalanced ecrossed design [11]
References [6, 14, 21, 22, 27, 29, 32, 33] also discuss
various aspects of the computation and use of ex-
pected mean squares.

Cross Classification Design

The computation of EMS for the balanced cross
classification design will be illustrated using a two-
factor example. The following discussion is similar
to that presented by Bennett and Franklin [26].
The EMS are computed from a two-way table in
which each row of the table corresponds to a source
of variation in the ANOVA table and each column
corresponds to a factor. This table for a two-factor
crossed design would have four rows and three
columns (Table 2). If the factor levels were sampled
from populations as described below (factor C de-
notes nested replication),

Factor No. of Levels Population Size
A a a
B b B
C c r

then the table and EMS are constructed using the
following rules:

(i) In any row write the number of levels
under any column which corresponds to a
letter not present in the source of varia-
tion being considered.

(i) In any row enter a 1 under any column
which corresponds to a letter in paren-
theses in the source.

(iii) In any row write in the remaining columns

Journal of Quality Technology



130 RONALD D. SNEE

TABLE 2. Expected Mean Square Computations for a Two-Factor Crossed Design with Nested Replication

FACTORS
A B £
a* g ¥
SOURCE o b c
" (1-92) g o
B L] ”'%}m L
AB (-5 (1-2y@ e
# A
C(J\B} 1 [¥}] 1 n

(1-5503
¥

EXPECTED MEAN SQUARE COEFFICIENTS "

2 2 2 2
7 C(AB) ) B A
]_E 'E _
{ !'} cll ﬁ] be
g c(1-3 ac -
¥ a
(-5 c = #
¥

1 = = =

* POPULATION SIZE AND NUMBER OF LEVELS, i.e., FACTOR A HAD o LEVELS WHICH WERE SAMPLED FROM A POPULATION OF

« POSSIBLE LEVELS.
‘"RESULT OF RULE (i)
RESULT OF RULE (ii)
(IRESULT OF RULE (iii)

IRESULT OF RULES (iv) AND (v}, BLANKS RESULT FROM STEP (iv)

(1 — p/x) where p and 7 are the number
of levels and population size, respectively,
for the factor in the column heading. If
p << < m, then the coefficient is 1, and
if p = =, then the coefficient is zero.

(iv) The EMS for a given source of variation
contains a variance component for each of
the other sources which has a letter(s)
identical to the letter (s) in the source of
interest. For example, the EMS for factor
A contains any variance component which
has 4 in its name while the EMS for the
AB interaction contains any variance com-
ponent with the letters AB in its name.

(v) Inany EMS the coefficients of the variance
components (¢7) will be the product of
the entries of the rows in the table ex-
excluding those columns which are in the
name of the source of variation correspond-
ing to the EMS. Any variance component
which has all subscripts oceurs with mul-
tiplier 1. For example, in computing the
EMS for factor A, the A column is ex-
cluded (“covered up’”’) while the A and
B columns are excluded in computing
the coefficients of the ¢i’s in the EMS
for the AB interaction. In the two-factor
crossed design, the coefficient for o%cs
is 1 in the EMS for C'(4AB) because all
three columns (4, B, and C') are included in
the name of the source.

The EMS’s for the two factor crossed design are
shown in Table 2. The entries on the left hand side
of the table resulted from rules (i), (ii), and (iii),
while the coefficients on the right hand side of the
table resulted from rules (iv) and (v).

Journal of Quality Technology

The reader will note that up to this point, finite
and infinite populations and fixed and random
factors have not been discussed. The EMS algo-
rithms presented by Hicks [28] and Scheffé [30]
require that the factors be designated as fixed or ran-
dom. Bennett and Franklin’s [26] algorithm, which
has been described here, is more general. Fixed and
random factors are the result of assumptions con-
cerning the relationship between the number of
levels in the design (p) and the population of levels
which could have been sampled (). If the p levels
have been sampled from a finite population of =
possible levels and p = «, then (1 — p/#x) = 0 and
the factor is said to be fired. If the p levels represent
a sample from an infinitely large population (r = « ),
then p/r = 0, (1 — p/x) = 1, and the factor is
random. In some cases p < = and = is finite. For
example, the twenty levels of factor A may represent
20 machines out of a total of 100 possible machines
which are manufacturing a given product. In this
instance (1 — p/x) = (1 — 20/100) = .8. The
EMS’s and F tests for the two factor crossed
design in thecase of A and B fixed (regressionmodel),
A and B random (variance components model), A
fixed and B random (random block design or mixed
model) are shown in Table 3.

The F test for the significance of a factor effect
is MSg/MS., where MSy is the observed mean
square for the factor of interest and M S, is the error
mean square where M S, is defined as the mean square
whose expected value is the same as the expected
value of M Sy when o = 0, i.c., factor F has no
significant effect. For example, consider the two
factor crossed design with A fixed and B random.
From Table 3,

Yol. 6, No. 3, July 1974
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TABLE 3. Expected Mean Squares for Two Factor Crossed Designs*
A& B FIXED'" A & B RANDOM!" A FIXED, B RANDOM!!!

ERROR ERROR ERROR

131

ClAB)

SOURCE oap) Am °B °% TERM  ofn  ohg vh 0% TERM ol olg o} o3 TERM
A 1 . be C(AB) ‘¥ 1 c be  AB 1 - be  AB
B 1 ot C(AB) | & i@ AB 1 o C(AB)
AB 1 . C(AB) 1 . C(AB) 1 e C(AB)
1 1 1

*C RANDOM IN ALL CASES, LE., (1 - c¢/y) = 1; COEFFICIENTS DEVELOPED FROM THE GENERAL FORMULAS SHOWN IN THE RIGHT

HAND SIDE OF TABLE 2.
UFIXED IMPLIES (1 -p /= ) = 0, RANDOM IMPLIES (1 - pilel=l

{'THE ERROR MEAN SQUARE FOR TESTING H ,;. 015 WS¢ (A

LE., E(M5,} mo? o2
WS = ¢ amy* be o}

E(MS.) = obum + cots + beo’
Assuming A has no effect (Hy: 0% = 0)
E(MSA ] a‘f_‘ = 0) = gi"{AB) + Cs’fw , and
E(MSAB) a 0%3(,49} + Co’is

hence, the significance of the 4 effect (H, :0% = 0)
is tested by comparing F = MS,/MS.,, with the
tabulated statistic from an F distribution with
(@—=1)and (@ — 1)(d — 1) degrees of freedom.

From this discussion we can conclude that the
EMS’s, F ratios, and subsequent inferences from
an ANOVA are highly dependent on the assumed
relation between number of factor levels in the
design (p) and the total number of levels in the
population (r) which could have been included in
the design. The data in Table 1, which we discussed
earlier, are from an experiment in which the effects
of 4 reagents and 3 catalysts on production rate
(coded) were studied [23]. The F ratios presented by
Smith [23] assume both catalysts and reagents are
fixed effects and duplicates is a random factor,
hence, the error mean square for all effects is the
duplicates mean square (M Scs , Table 3).

ANOVA TABLE

Source. _df_ MS_ B
Total 23

Reagents 3 4034 - 100
Catalysts 2 2424 = 6.0
R x C 6 14:4 = 35
Duplicates 12 4

Since reagents and catalysts were assumed to be
fixed factors, we conclude that the reagents and

Vol. 6, No. 3, July 1974

catalyst populations being studied consisted of the
four reagents and three catalysts included in this
experiment. Any conclusions are restricted to these
populations and cannot be generalized to other
reagents and catalysts.

Unbalanced Nested Design

The nested design is used frequently to determine
the sources of significant variation in a process and
to estimate variance components which provide a
quantitative measure of the amount of variability
contributed by each of the sources. The EMS’s for
the nested ANOVA in the case of the balanced
design can be computed using the Cornfield-Tukey
algorithm [3] described earlier. However, many
nested designs are unbalanced. The sampling pat-
tern may be unbalanced because of economie con-
straints or one may be analyzing production data
which were collected without the aid of a design.
In these situations, the EMS’s can be computed
using Gaylor and Hartwell’s algorithm [9] which, as
we noted earlier, gives the same results as the al-
gorithms proposed by Ganguli [7], Anderson and
Bancroft [25], and Mahamunulu [17] when all fac-
tors are assumed to be random and the popula-
tions infinite in size.

The computations for the unbalanced nested de-
sign will be illustrated using the data (Table 4) from
the “staggered nested design” published by Bain-
bridge [1]. The experiment was designed to estimate
the amount of variability in a chemical property of
a textile material which could be attributed to each
of four factors.

Journal of Quality Technology



132 RONALD D. SNEE

TABLE 4. Unbalanced Nested Design Data'®

MACHINE 1 MACHINE 2

ANALYST 2
TEST 2 TEST 3

ANALYST 1
DAYS TEST 1

ANALYST 3
TEST 4

O 00 00O

Sl AN N D Om~N WA W=

b e T = = e e = = el T

(=3
o

N S P OO O N NN O DN N O D N N EENOR O S ®E OO Ns O

BNOSo“D A A NN LW R RN MO wr NN RD VDD N e

[y
k=)

Lad
. 2
W?‘!”?’—“OF\O\th’;wm—‘-ﬂo‘a-ocou\‘ac—-o:u--.a\ﬂccnwo-a—-\o'\omw

—

&

M N P D OO N A O SO D~ OO OO OO DO A DR D OO Sm S m®

DwEmoohr o Lo N R R R D NN NS ND LWL R RND R~

S O W R I 00 I BN B LN O B 50 On B £ B Fa ol ) et B LN P D M ] B9 L Ln 00 O W O R

A D LD M N R PO DR RN N O RN DR S W B~

* SEE REFERENCE (1)

Factors Factor Descriplion
A Days Changes in raw material
Bin A  Machines Different production units
CinB  Long Term Test Different analysts on dif-

ferent shifts using any
piece of test equipment

Duplicate tests by the same
analyst at a given time
on one piece of test equip-
ment

Din C Short Term Test

Samples were obtained from ecach of 2 machines
selected at random on each of 42 days. The sample
from one machine was analyzed by two analysts on
different shifts (one analyst in duplicate) while a
single determination was made on the sample from
the other machine. The ANOVA for the resulting
data (Table 4) is given in Table 5.

Before we can construct F' tests of significance and
and compute the variance components, we have to
compute the expected values of the mean squares.
The EMS for balanced and unbalanced nested de-

Journal of Quality Technology

signs have the same form. Namely, the EMS for a
given effect contains

(i) o for the effect itself, plus
(ii) ¢ for any effect nested in it.

For example, the EMS for factor 4 in a four factor
design contains ¢”’s for factors 4, B, C, and D (B is
nested in A, ¢'in B, and D in C') while the EMS
for factor C contains ¢’s for factors € and D (D is
nested in factor C') and the EMS for factor D con-
tains only o5 (no factors are nested in D).

The next step is the computation of the coefficients
(%s) in the EMS. In this example, the population
sizes a, 8, v, and & are all infinite (random factors),
hence, Gaylor and Hartwell’s [9] formulae shown at
the top of Table 6 reduce to those shown at the
bottom of Table 6 which are given by Ganguli [7]
and Anderson and Banecroft [25]. If should also be
noted that in the case of balanced designs the co-
efficients computed from these algorithms will be
identical to those obtained from Cornfield-Tukey
algorithm described earlier. References [8, 12] also
discuss EMS computation for unbalanced nested
designs.

The coefficients are functions of the sample size
tables. Using the dot notation to indicate summa-
tion over an index (n.. = ni), the sample

ik

size tables for the four factor example are

1 gt ke b 42
S 4 4 4
" <1 L1 T 1 . 3|
ik 2 | 12| 1] 2 [ 11

and the resulting coefficients are shown in Table 5.
It is interesting to note that the coefficient for o% ,
which appears in the EMS for factors 4, B, and C,
has three different values (3/2, 7/6, 4/3) depending
on which EMS is involved (Table 5). The coefficients
for ¢ are also different. In a balanced design the
cocfficient associated with a given ¢ would be the
same in all EMS,

Variance Components

The variance components are computed by equat-
ing the observed mean squares to the appropriate
EMS’s and solving the system of linear equations.

Vol. 6, No. 3, July 1974
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TABLE 5. Analysis of Variance for Unbalanced Nested Design Example

_SOURCE df S5 MS EMS
TOTAL 167 751.27
A DAYS 4 365.58 8.917 a[z) +3/2 "é +5/2 aé +4 "i
B IN A MACHINES 42 196.59 4.681 aé + ?/6aé+ 3;’25;
CIN B LONG TERM TEST 42 118.79 2.828 gé +4x3aé
D IN C SHORT TERM TEST 42 70.31 1.674 5
ERROR ERROR VARIANCE
SOURCE df MEAN SQUARE SEL COMPONENT PERCENT
A 26.86'" 6.300'" 1.42 654 14.5
B IN A 49,0541 2.684'1 1.74* 1.331 29.4
CINB 42.00 1.674 1.69* .B66 19.1
DINC 1.674 37.0
TOTAL 4,525

* SIGNIFICANT AT THE .05 PROBABILITY LEVEL

{VERROR MEAN SQUARE SYNTHESIZED AND DEGREES OF FREEDOM COMPUTED BY SATTERTHWAITE'S FORMULA (19, 20)

If M is the (p X 1) vector of mean squares, K is
the (p X p) matrix of EMS coefficients, and V is
the (p X 1) vector of variance components then

M = KV implies V = KM, i.e.

= o = 1., =
2
9p kyy kyg .o kI,, MS,
A2
B2 knku...k“ MS,
42 ¥ K s ok MS
1 pl p2 (13 P

The variance components (Table 5) in the four
factor unbalanced nested design example are:

s - A s
3; 1 3/2 5/2 4 8.917 1.674
é: 1 7/6 320 4.681 866
82 1 4/3 0 0 2828 | | 133

2
4 v 1 0 0 0 l.é?dJ 654
— - | — o~ — — -

The reader will note that the variance com-
ponents could also be computed by first solving for
ép and then using that result to solve for ée, ete.
However, it will be shown later that the inverse of
the coefficient matrix (K™) will be useful in making
the appropriate F tests. Although it will not be
discussed here, variance components in other designs
are estimated in the same way as described previously

Vol. 6, No. 3, July 1974

for nested designs, i.e., the observed mean squares are
equated to the EMS’s and the resulting system of
linear equations are solved for the variance com-
ponents.

Synthesizing Mean Squares

When analyzing nested designs, it is also appro-
priate to construct F tests to determine whether
the observed variance components are significantly
different from zero. There is no problem in con-
structing F tests for balanced nested designs; how-
ever, in unbalanced nested designs involving 3 or
more factors, there may be one or more effects for
which an error mean square does not exist. In these
situations, error mean squares can be synthesized by
forming linear combinations of the observed vari-
ance components (67). Since the ¢ are linear com-
binations of the observed mean squares, the syn-
thesized mean square (L)

L=kl + kaoh 4 -+ + kptd

can also be expressed as a linear combination of the

observed means squares
L = aM8 4+ M8y + -+ + a,M8S,.

If »; is the degrees of freedom associated with the
1th observed mean square (M S;), then Satterthwaite
[19, 20] has shown that the degrees of freedom asso-
ciated with L are

5= Lﬁ/é (a:MS;)/v; .

Journal of Quality Technology



134 RONALD D. SNEE

TABLE 6. Expected Mean Square Coefficients for Four Factor Unbalanced Nested Designs™

VARIANCE COMPONENT COEFFICIENTS - FINITE POPULATIONS

2
SOURCE A oh o¢ A A
2 2
A mwaid ! x (r.?. . “ii.)i. z(n?. n'_.)l sl ok
T L — 2 ijv i b/t ‘
C"Y 1
[N}
BINA Sho-a 1 2 n. sn?
i .z.k(ni;k'n'_l_)fii i B
' t..y
|
fc..=%h: 2
CINB '.1:” £0; 1 i?k”iikﬂik
DINC Eodigp= B 1
PpE e aE
VARIANCE COMPONENTS COE FFICIENTS - INFINITE POPULATIONS (= y==)
2 2 2: 2
SOURCE df 3 o o =
: R S
A o-1 ! i-\i-k nfik -iln"i'F‘ iz"i"Fi
BINA b, - @ 1 S TR £
i ijle ik i i
Sc. =Xh S T
CINB iic" 20, 1 iilk nllkf”k
i e 1
DINC ifkd"k _ﬁc,l
v SV = U] ¢ mE TR ) i W)
i a-1 R tik T -2k

1 g . No. A levels, 'D-I = No.B levels in ith a class, ci= No. C levels in i]th B class, dl. = No. D levels in iikrh C class

(i-'I,Z,...u;i:l,?,,.‘,bi;k=1,2,,..,cii)-

The resulting ratio, ¥ = MS/L, is approximately
distributed as F with v and » degrees of freedom
where » is the degrees of freedom associated with
the mean square in the numerator.

The variance components are given by
V=K'M
henee, a linear eombination of the variance compo-
nents is given by
kV = kk'M

where k = (ky, k2, -+, kp) 18 the row vector of
coefficients in the linear combination of interest. It
is concluded that the a;’s for a given synthesized
mean square are given by

a = kK7,
= . sk [
(0102' up) {k]k2 kp} ku 12 1p
by kg o <lgp
ko ki v ik
pi p2 PP
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Thus, if we compute the variance components by
inverting the variance component cocfficient matrix
(K), then the K™ matrix is available and can be
used to compute a's and subsequently the degrees
of freedom (7) associated with the synthesized mean
square L. This formulation is particularly useful
when one is using a computer to construct the syn-
thesized mean squares and associated approximate
F tests [24].

In the four factor unbalanced nested design
example (Table 5) the synthesized mean square for
testing the Hy: 0% = 0 is

&y + 1

e a2
= D O

=
L= + 2.5 68

I

1.674 + 1.5(.866) + 2.5(1.331) = 6.300.
In terms of mean squares
L=MS,+ 1.5(MS; — MS»)/4/3
+ 25(MSs — MSp — 7/6(MSc — MSp/4/3)/3/2
= 5/3M8s — 1/3MS¢ — 1/3MS»
= 5(4.681)/3 — 2.828/3 — 1.674/3 = 6.300

hence, the ai’s are:a; = 0,02 = 5/3,a3 = as = —1/3.

Yol. 6, No. 3, July 1974



COMPUTATION AND USE OF

In matrix notation the a;’s are given by

(0, 0,0,0,) - (1 32 52 0 |1 32 52 4|7
16 320
143 0 0
L‘ o 0 0
- (v 32 s2 oo 0 0 1]
0 0 34 34
0 23 1212
/4 512 112 112
- (0 53 a3 a3)
The degrees of freedom for L = 6.300 are
e (6.300)"
~ (5(4.681)/3)*/42
+ (2.828/3)%*/42 + (1.674/3)*/42
= 26.86

and the ratio F = 8.917/6.300 = 1.42 is approxi-
mately distributed as F with 41 and 26.86 degrees
of freedom. The tabulated F statistic for 40 and 27
degrees of freedom at o .10 is 1.60. It is con-
cluded that ophays = .654 is not significantly different;
from zero. The synthesized mean square and F
ratio for factor B (machines) are given in Table 5.
The reader is referred to reference [5] for another
example of the use of synthesized mean squares in
the analysis of unbalanced nested designs.

It is also sometimes necessary to compute synthe-

EXPECTED MEAN SQUARES IN ANALYSIS OF VARIANCE
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sized mean squares in the analysis of some balanced
designs. The EMS’s for a four factor partially
nested and crossed design in which factor € is nested
in the AB combination and crossed with D are
shown in Table 7. If 4 is a fixed factor and B, C,
and D are random factors, then the EMS for factor A

EMS4) = (1 —¢/y)(1 — d/8)sccan»
+ (1 = b/B)e(1 — d/8)oasn + be(1 — d/6)oan
+ (1 = ¢/y)docun + (1 — b/B)cdois
+ bedo
reduces to (Table 8)
EMS8.) = ocump + coasp + beshn
+ dooium + cdoan + bedo’ .

If one is willing to assume that o%p = 0, the M S5
can be used as an error term to test Ho: o3 = 0. In
practice, one might test Ho: 03 p = O first, by com-
puting F = MS,p/MSusp. If He: cap = 0 was
accepted then Ho: o5 = 0 could be tested by F =
MS,/MS4s. If Ho: 0ap = 0 was rejected, then a
mean square and its degrees of freedom would have
to be synthesized as discussed earlier. The reader is
referred to Scheffé [30, p 245-248] for a discussion
of synthesized mean squares in the case of a three
way crossed design in which all factors are random.

It should be noted that Satterthwaite’s [19, 20]
formula for the degrees of freedom of a synthesized

TABLE 7. Expected Mean Squares for a Four Factor Partially Nested and Crossed Design

FACTOR EXPECTED MEAN SQUARE COEFFICIENTS (1
A B L D
a* B ¥ &
2 "2 02 ai 02 u2 62 02 ‘,2
SOURCE o b ¢ 4 “cae)p ABD “BD ‘AD ‘D “c(aB) “AB B ‘A
A u-%) b c d ¥y B Arcs* bed” - y'd B'cd -  bed
B a Q %} c d y' & a’ed’ acd” - - y'd a” ed aed
AB -8 -%} c d 98 % E - vy d ed
C (AB) 1 1 (1-5 d 5 - - - - d
D a b c {l-% ¥ a’f’c of’c a’be abe
AD -8 b e -4 , Be - be
BD CE I I a’c  ac
ABD -4 {1-%} & (1.%.) v &
c d
C{AB) D 1 1 (lerl {l-:‘}-) 1
A - caf1-by el 1sy se .y
“:LB (1 ?,y tl;),s 1 aJ

* Population size and number of levels, i.e., Factor A hod o levels which were sompled from o population of a possible levels.
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TABLE 8. Expected Mean Squares
FOUR FACTOR PARTIALLY NESTED AND CROSSED DESIGN
FACTOR A FIXED, FACTORS B, C, AND D RANDOM

_SOURCE EXPECTED MEAN SQUARE
A “CABID * “ABD * Pp* T (ap) + g * e}
B 7 EABID * % Bp * ¢ (ap) * °cdoh
o CAB)D * “ABD * @ (AR ¥ g
C (AB) “E(AB)D + dof: (AB)

D UE{AB}D + ncaB’-D+ ohms
o “cz:(aa) D*“Asp * *Ap
- °C(AB)D * ““Bp

ABD 9CAB)D * < ABD

C(AB) D

2
“C(AB) D

mean square is an approximation and not an exact
solution. To this author’s knowledge, the accuracy
of the approximation has not been investigated in
general, although several authors have investigated
special cases [2, 4, 10, 15, 16, 31]. It is generally

~agreed that the approximation is good. If the syn-
thesized mean square is a function of two mean
squares, (L = aiM8; + a:M8,) the approximation
is not accurate when there is a large difference
between »; and . , the degrees of freedom associated
with MS; and M S, [4], and/or » and v, are small
(14, 15]. Gaylor and Hopper [10] have investigated
the accuracy of the approximation when L =
MS, — MS,.

A final comment is that synthesized mean squares
may be negative if one or more of the observed
variance components (¢7) is negative. An ad hoc
procedure is to set any negative ¢ to zero when
computing the synthesized mean square. The accu-
racy of this procedure is unknown to this author.

Computer Programs

Computation of expected mean squares is essen-
tial in interpretation of an analysis of variance;
however, EMS computations are not available in
many ANOVA computer programs. Two programs
in the public domain which have EMS options are
BMDO8V in the UCLA Biomedical Computer Pro-
gram Package (University of California Press, 2223

Journal of Quality Technology

Fulton St., Berkeley, California 94720) and the
ANOVAR program developed at Brigham Young
University.
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EXPECTED MEAN SQUARES

Fixed vs. Random Effects

* The choice of labeling a factor as a fixed or random effect will affect how you will make the
F-test.

* This will become more important later in the course when we discuss interactions.

Fixed Effect

e All treatments of interest are included in your experiment.

* You cannot make inferences to a larger experiment.

Example 1: An experiment is conducted at Fargo and Grand Forks, ND. If location is
considered a fixed effect, you cannot make inferences toward a larger area (e.g. the central Red
River Valley).

Example 2: An experiment is conducted using four rates (e.g. 2 X, X, 1.5 X, 2 X) of a herbicide
to determine its efficacy to control weeds. If rate is considered a fixed effect, you cannot make
inferences about what may have occurred at any rates not used in the experiment (e.g. %4 x, 1.25

X, etc.).

Random Effect

* Treatments are a sample of the population to which you can make inferences.
* You can make inferences toward a larger population using the information from the analyses.

Example 1: An experiment is conducted at Fargo and Grand Forks, ND. If location is
considered a random effect, you can make inferences toward a larger area (e.g. you could use the
results to state what might be expected to occur in the central Red River Valley).

Example 2: An experiment is conducted using four rates (e.g. /2 X, X, 1.5 X, 2 X) of an
herbicide to determine its efficacy to control weeds. If rate is considered a random effect, you
can make inferences about what may have occurred at rates not used in the experiment (e.g. Y4 X,
1.25 X, etc.).



Why Do We Need To Learn How to Write Expected Mean Squares?

* So far in class we have assumed that treatments are always a fixed effect.

* Ifsome or all factors in an experiment are considered random effects, we need to be
concerned about the denominator of the F-test because it may not be the Error MS.

* To determine the appropriate denominator of the F-test, we need to know how to write
the Expected Mean Squares for all sources of variation.

All Random Model

Each source of variation will consist of a linear combination of o plus variance components
whose subscript matches at least one letter in the source of variation.

The coefficients for the identified variance components will be the letters not found in the
subscript of the variance components.

Example — RCBD with a 3x4 Factorial Arrangement

Sources of variation 52 raj 5 raoé rboj ab 0}2a
Rep o’ +abo;

A o’ +r0o, +rbo’,

B o’ +ro’, +raoc,

AxB o’ +ro’,

Error o’

Step 1. Write the list of variance components across the top of the table.
- There will be one variance component for each source of variation except Total.
- The subscript for each variance component will correspond to each source of variation.
- The variance component for error receives no subscript.

I f variation 2 2 2 2 :
Sources of variatio o 05 o o, Op

Rep
A

B
AxB
Error




Step 2. Write in the coefficients for each variance component.
- Remember that the coefficient is the letter(s) missing in the subscript.
- The coefficient for Error is the number 1.

Sources of variation 52 raj 5 raoé rbof1 abo?

Rep
A

B
AxB
Error

Step 3. All sources of variation will have o (i.e. the expected mean square for error as a
variance component).

NS

2

Sources of variation raj 5 raoé rbof1 abo,

NS

Rep
A

B
AxB
Error

NS

LS}

999 9. 9|9

Step 4. The remaining variance components will be those whose subscript matches at least one
letter in the corresponding source of variation.

SOV o7 ro’, rac, rbo?, abo;

Rep o’ +ab 0; (Those variance components that have at least the letter R)

A o’ + roj gt rbaj (Those variance components that have at least the letter A)

B o’ + rO'jB + raaé (Those variance components that have at least the letter B)

AxB o’ + 1”0/21 B (Those variance components that have at least the letters A and B)
Error 52




Example — CRD with a 4x3x2 Factorial Arrangement

NS

Sources of variation

Q

2 2 2 2 2 2 2
YO se a0y, 1bOy. rco,, rabo. raco, rbco,

A O +10 . +1bO +1CO, +1bCT
B O’ +10°,. +1a0,, +1CO., +1ACT;
C O +10 . +1ac,, + b0’ + rabo;.
AxB o’ +10’,. +rco’,

AxC O’ +r0’ . +1bo,

BxC O’ +10°, +1ac,,

AxBxC 0'2 + ’”U/ch

Error o’

Step 1. Write the list of variance components across the top of the table.
- There will be one variance component for each source of variation except Total.
- The subscript for each variance component will correspond to each source of variation.
- The variance component for error receives no subscript.

1911 2 2 2 2 2 2 2 2
Sources of variation & Ope Oy O, On Op O

O 45c
A

B

C

AxB
AxC
BxC
AxBxC
Error




Step 2. Write in the coefficients for each variance component.
- Remember that the coefficient is the letter(s) missing in the subscript.
- The coefficient for Error is the number 1.

T f ri 1 n 2 2 2 2 2 2 2 2
Sources of variation  o* rg’,. rao;. rbo’. rco’, rabol raco, rbco’

A

B

C

AxB
AxC
BxC
AxBxC
Error

Step 3. All sources of variation will have o (i.e. the expected mean square for error as a
variance component).

NS

T f riation 2 2 2 2 2 2 2
Sources of variatio FOye a0y, rboy. rco., raboe raco, rbco’

NS

A

B

C

AxB
AxC
BxC
AxBxC
Error

[ N S S " S o

Q,Q,Q9,Q,%,Q,Q, 9|9

Step 4. The remaining variance components will be those whose subscript matches at least one
letter in the corresponding source of variation.

SOV o’ ro,. rao,. rboi. reol, rabol raco, rbeo’

A o’ + rO’jBC +7b O'jc +rc 0/213 + rbcaj (Those variance components that have at least the letters A)
B o’ + ro‘jBC +ra Oéc +7rc 0/213 + raco§ (Those variance components that have at least the letter B)
C o’ + rO’iBC +ra Uéc + rbajc + rabO'é (Those variance components that have at least the letter C)
AxB o’ + rUiBC +rc 0'/213 (Those variance components that have at least the letters A and B)
AxC o’ +ro i sc T rbo ic (Those variance components that have at least the letters A and C)
BxC o’ +ro i gc Trao éc (Those variance components that have at least the letters B and C)
AxBxC o’ +ro j BC (Those variance components that have at least the letters A, B and C)
Error o




All Fixed Effect Model

Step 1. Begin by writing the expected mean squares for an all random model.
Step 2. All but the first and last components will drop out for each source of variation.

Step 3. Rewrite the last term for each source of variation to reflect the fact that the factor is a
fixed effect.

Example RCBD with 3x2 Factorial

SOV Before After
Rep  o° +abo; o’ +abo;
A 2 2 2 2 (Zi2

o +ro, +rbo e o +rb

AB A (a _ 1)

B 2

o’ +ro’, +raoc? —> o’ + razﬂ
AxB §: 2

o’ +ro, —> ol +r (ap )’7

(a-1)(b-1)

Error 52 —> o’

Rules for Writing Fixed Effect Component

Step 1. Coefficients don’t change.
Step 2. Replace o with E

Step 3. The subscript of the variance component becomes the numerator of the effect.

Step 4. The denominator of the effect is the degrees of freedom.



Example 2 CRD with a Factorial Arrangement

SOV Before After
A O 410, +rbol +rco’, +rbco;, T » oy rbcEOi
a-1)
B O? +10° . +1a0 +1c0’y +racor T ® oy raczﬁ
(b-1)
C O’ +roi. +rao,. +rbol. +rabo; o 1 rah v
(c-1)
AxB O’ +10°,. +1co’, - e E (a/a’)fj
(a-D(B-1)
AxC o’ +rol,. +rbol, — .. E (),
(a-D(c-1)
BxC o’ + rojBC + raUéC —> o 41 E (/J’)/ )3,{
(b-1(c-1)
MBC 7o — S
(a-D(b-D(c-1)
Error o’ —> 5’
Mixed Models

For the expected mean squares for all random models, all variance components remained.
For fixed effect models, all components but the first and last are eliminated.

For mixed effect models:
1. The first and last components will remain.

2. Of the remaining components, some will be eliminated based on the following rules:
a. Always ignore the first and last variance components.

b. For the remaining variance components, any letter(s) in the subscript used in
naming the effect is ignored.

c. If any remaining letter(s) in the subscript corresponds to a fixed effect, that
variance component drops out.



Example 1 — RCBD with a Factorial Arrangement (A fixed and B random)

SOV Before After
Rep  o° +abo; o’ +abo;
—
A 2 2 2 2 2 E:aiz
O +ro; +rbo —> O +ro,+rb
(a-1)

B o’ +ro’, +rao, o’ +rao,
AxB 2 2 2 2

X O +1r0, e O +1r0,
Error  o? —»

Steps for each Source of Variation

Error - No change for Error.
AxB - No change for AxB since only the first and last variance components are present.

B - For the middle variance component, cover up the subscript for B, only A is present.
Since A is a fixed effect this variance component drops out.

A - For the middle variance component, cover up the subscript for A, only B is present.
Since B is a random effect this variance component remains.

Rep - Replicate is always a random effect, so this expected mean square remains the same.



Example 2 CRD with a Factorial Arrangement (A fixed, B and C random)

SOV Before After

A O +r0 . +1bo’ +rcO’, +1bCO, ., , , E al
—» O +raABC+rbaAc+rc0AB+rbc(a_1)

B O’ +10° . +1A0,, +1CO., +1ACT; —p O +1a0,, +1aco,

C O’ +ro,. +rac,. +rbo’ . +rabo}, —» O’ +raoc,. +rabo;

AxB o’ +10’,. +rco’, —> 0 +rol,. +rco,

AxC O’ +r0’ . +1bo, —» o’ +ro,. +1bol,

BxC O’ +10° . +1ac,, —» o’ +rao,,

AxBxC g% +ro?,. > 1o,

Error o’ — 52

Steps for Each Source of Variation

Error - Error remains the same.

AxBxC - The error mean square for AxBxC remains the same since there are only first and last
terms.

BxC - Cover up the B and C in the subscript, A remains and corresponds to a fixed effect.
Therefore the term drops out.

AxC - Cover up the A and C in the subscript, B remains and corresponds to a random effect.
Therefore the term remains.

AxB - Cover up the A and B in the subscript, C remains and corresponds to a random effect.
Therefore the term remains.

C-  ABCterm - Cover up the C term in the subscript, A and B remain. A corresponds to a
fixed effect and B corresponds to a random effect. Since one of the terms corresponds to
a fixed effect, the variance component drops out.

BC term - Cover up the C term in the subscript, B remains. B corresponds to a random
effect. Since B is a random effect, the variance component remains.

AC term - Cover up the C term in the subscript, A remains. A corresponds to a fixed
effect. Since A is a fixed effect, the variance component drops out.

B-  ABCterm - Cover up the B term in the subscript, A and C remain. A corresponds to a
fixed effect and C corresponds to a random effect. Since one of the terms corresponds to
a fixed effect, the variance component drops out.



BC term - Cover up the B term in the subscript, C remains. C corresponds to a random
effect. Since B is a random effect, the variance component remains.

AB term - Cover up the B term in the subscript, A remains. A corresponds to a fixed
effect. Since A is a fixed effect, the variance component drops out.

ABC term - Cover up the A term in the subscript, B and C remain. B and C correspond
to a random effect. Since none of the terms correspond to a fixed effect, the variance
component remains.

AC term - Cover up the A term in the subscript, C remains. C corresponds to a random
effect. Since C is a random effect, the variance component remains.

AB term - Cover up the A term in the subscript, B remains. B corresponds to a random
effect. Since B is a random effect, the variance component remains.

Deciding What to Use as the Denominator of Your F-test

For an all fixed model the Error MS is the denominator of all F-tests.

For an all random or mix model,

1.

2.

Ignore the last component of the expected mean square.
Look for the expected mean square that now looks this expected mean square.

The mean square associated with this expected mean square will be the denominator of
the F-test.

If you can’t find an expected mean square that matches the one mentioned above, then
you need to develop a Synthetic Error Term.

Example 1 — RCBD with a Factorial Arrangement (A fixed and B random)

SOV Expected mean square MS F-test
Rep o’ +abo, 1 F=MS1/MSS5
2
A 2 2 EZ @,
O +ro,; +rb 2 F=MS2/MS4
(a-1)
B o’ +rao, 3 F=MS3/MSS5
AXB o’ +rol, 4 F=MS4/MS5
Error 52 5

10



Steps for F-tests

Fap - Ignore raf1 »- The expected mean square now looks like the expected mean square for

Fp -

Error. Therefore, the denominator of the F-test is the Error MS.

Ignore raoﬁ,. The expected mean square now looks like the expected mean square for
Error. Therefore, the denominator of the F-test is the Error MS.

E o’
Ignore rb( ’) . The expected mean square now looks like the expected mean square
a —

for AxB. Therefore, the denominator of the F-test is the AxB MS.

Example 2 CRD with a Factorial Arrangement (A fixed, B and C random)

SOV
A

B
C
AxB
AxC
BxC

Expected Mean Square MS F-test
2
a;
O +70° e +1bO7 . +FCO 7, + rbc( i) 1 (MS1+MS7)/(MS4+MS 5)
a —
o’ +rao,. +raco, 2 MS2/MS6
o+ raaf;c + rabaé 3 MS3/MSe6
O’ +10’,. +1co’, 4 MS4/MS7
O’ +10’ . +1b0, 5 MS5/MS7
o’ +rao,, 6 MS6/MSS8
AxBxC  ¢? +ro?,. 7  MST7/MS 8
o’ 8

Error

Steps for F-tests

Fagc -

Fgc -

Fac -

Fag -

Fc -

Ignore ro’,.. The expected mean square now looks like the expected mean
square for Error. Therefore, the denominator of the F-test is the Error MS.

Ignore rao,.. The expected mean square now looks like the expected mean square for
Error. Therefore, the denominator of the F-test is the Error MS.

Ignore rbo,.. The expected mean square now looks like the expected mean square
for AXBxC. Therefore, the denominator of the F-test is the AxBxC MS.

Ignore rcbaf1 »- The expected mean square now looks like the expected mean square
for AXBxC. Therefore, the denominator of the F-test is the AxBxC MS.

Ignore rabo . The expected mean square now looks like the expected mean square
for BxC. Therefore, the denominator of the F-test is the BxC MS.
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Fg- Ignore racoﬁ. The expected mean square now looks like the expected mean square
for BxC. Therefore, the denominator of the F-test is the BxC MS.

E o’
Fa- Ignore rbc( ’) . The expected mean square now looks like none of the expected mean
a —

squares. Therefore, we need to develop a Synthetic Mean Square

Need an Expected Mean Square that looks like: o> + 707, +rbo’. +1co’,.

— 2 2 2 L 2
AC= 0" +ro,. +rbo,. (missing rco,)
and

— 2 2 2 f o 2
AB= 0" +r0 ;. +rco, (missing rbo.)

An expected mean square can be found that includes all needed variance components if you sum
the expected mean squares of AC and AB.

ACMS +ABMS = 20° +2ro,. +1ho.. +1c07,

2
ABC *

The problem with this sum is that it is too large by o> + ro
One method would be to get the needed expected mean square is by:
AC MS + AB MS — ABC MS

AMS
ACMS+ABMS-ABCMS

Thus Fa could be:

However, this is not the preferred formula for this F-test.

The most appropriate F-test is one in which the number of MS used in the numerator and
denominator are similar.

This allows for more accurate estimates of the degrees of freedom associate with the numerator
and denominator.

The formula above has one mean square in the numerator and three in the denominator.
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The formula for F, that is most appropriate is

A MS + ABCMS
ACMS+ ABMS

The numerator and the denominator then become: 207 +2r0’,. + b0’ +rco’y.

Calculation of Estimated Degrees of Freedom

Calculation of degrees of freedom for the numerator and denominator of the F-test cannot be
calculated by adding together the degrees of freedom for the associated mean squares.

A MS + ABCMS
ACMS+ ABMS

For the F-test: Fa=

(AMS+ ABCMS)’
(A MS)? , (ABC MS)’
A df ABC df

The numerator degrees of freedom =

(ACMS + ABMSY’
(ACMS)’ , (AB MS)? ]

The denominator degrees of freedom =

ACdf ABdf

Calculation of LSD Values — CRD with a Factorial Arrangement (A fixed, B and C
Random)

LSDagc (0.05) =t 2Emor MS
r

0.05/2; Error df

/2Err0r MS
LSDgc (0.05) = t0.05/2: Brror df
ra
/2 ABCMS
LSDac (0.05) = t0.05/2: ABCAF ( )
rb
/2 ABCMS
LSDag (0.05) = t0.05/2: ABCAF ( e )
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2(BCMS)

LSDc (0.05) = t
rab

0.05/2;BCdf

2(BCMS)

0.05/2;BCdf
rac

LSDg (0.05) = t

2(ACMS + ABMS-ABC MS)
rbe

LSD4 (0.05) = t'0.05/2;Estimateddf \/

(ACMS + ABMS- ABC)’

Where Estimated df fort’ =

(ACMS)” (ABMS)’ (ABCMS)
ACdf ~ ABdf ~ ABCdf
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SAS Example for a Fixed and Random Effects Models for an RCBD with a
Factorial Arrangement (A and B both Fixed, and A and B both Random)

options pageno=1;
data fact;

input a b rep Yield;
datalines;
0 25.
31.
34.
27.
38
42 .
25.
29.
37.
30.
40.
43,
23.
28.
29.
30.
34.
44
22
26.
23.
33.
31
42 .
48.
67.
58.
35.
66.
44
64.
71.
42 .
31
81.
61.
27.
31
31.
29.
31.
38.
23.
27.
29.
30.
35.
37.

OO Joo oo WN U b ~J Oy 0 I

N 3

OO <IN O oo 0o

[eNe]

PP PP R RPRPRPRPRPRRPRPRERRRRERRERRERRERRER,OO0O000000000000000000000O0
®

W WWWWWNNNNNNRERPRPRPPPPOOODODODOWWWWWWNDNNMDNNMDNNMDNNNNERREPRERPRERREREOOOOO
O U WNREFPE YU WNEFEOYOO S WNEPEOYOO WNE OO WNEOYOO® WNREREOOS WNE OO & wDN P

o) O ~J 00 O & W U1 U N
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23.
25.
29.
20.
29

36.
24.
27.
29.
23

32

37.
21.
23.
24.
25.
26.
34.
20.
24.
23.
23.
31.
40.

NN NDNODNDNDNDNNNDNDNDNNDDNDNDNDNDNDDNDNDNDDNDDNDND
W WWWWWMNDNNDNNMNDNNNNNRERERPRPRPRRPRPRRPRPRPROOOOOO
O U WNEFEP OO WNREOUO S WNE OO & WDN P

O 3N o @0 00 W

NN 00 WwWwowu N WwWJN o

N

ods graphics off;

ods rtf file='fixedfact.rtf';

proc anova;

class rep a b;

model yield=rep a b a*b;

means a b/lsd;

means a*b;

title 'ANOVA assuming that A and B are fixed effects';
run;

proc anova;

class rep a b;

model yield=rep a b a*b;

test h=a b e=a*b;

means a b/lsd e=a*b;

means a*b;

title 'ANOVA Assuming that A and B are both random effects';
run;

ods rtf close;
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ANOVA assuming that A and B are fixed effects

The ANOVA Procedure

Class Level
Information

Class | Levels | Values

rep 61123456
31012
b 410123

Number of Observations Read | 72

Number of Observations Used | 72




Dependent Variable: Yield

ANOVA assuming that A and B are fixed effects

The ANOVA Procedure
Sum of
Source DF Squares | Mean Square | F Value | Pr > F
Model 16| 9137.02333 571.06396 11.97| <.0001
Error 55| 2623.49667 47.69994
Corrected Total | 71| 11760.52000
R-Square Coeff Var | Root MSE | Yield Mean
0.776923 | 20.00922 6.906514 34.51667
Source | DF| Anova SS| Mean Square | F Value | Pr>F
rep 51| 1847.900000 369.580000 7.75| <.0001
a 2| 3358.260833 1679.130417 35.20| <.0001
b 3| 1832.094444 610.698148 12.80| <.0001
a*b 6] 2098.768056 349.794676 7.33] <.0001




ANOVA assuming that A and B are fixed effects
The ANOVA Procedure

t Tests (LSD) for Yield

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom 55
Error Mean Square 47.69994
Critical Value of t 2.00404
Least Significant Difference 3.9955

Means with the same letter
are not significantly
different.

t Grouping | Mean| N |a
A 43.750| 241

B 32.354| 2410

C 27.446| 242




ANOVA assuming that A and B are fixed effects

The ANOVA Procedure

t Tests (LSD) for Yield

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom 55
Error Mean Square 47.69994
Critical Value of t 2.00404
Least Significant Difference 4.6137

Means with the same letter
are not significantly
different.

t Grouping | Mean| N b

A 40.800| 181

A

A 38.139| 180
29.811| 182

B 29.317| 1813




ANOVA assuming that A and B are fixed effects

The ANOVA Procedure

33.3166667 | 6.2062603

34.4333333| 7.1096179

31.8333333| 7.1432952

29.8333333 | 7.6028065

53.6166667 | 12.8095928

58.8666667 | 18.8470334

31.6500000| 3.8119549

30.8666667 | 5.2343736

27.4833333| 5.6015772

29.1000000| 5.4391176

25.9500000| 4.6804914

(=230 Ie N Bie, W B« ) W o) S e N = N K= N B = N e N e N B e

27.2500000| 7.2312516




ANOVA Assuming that A and B are both random effects

The ANOVA Procedure

Class Level
Information

Class | Levels | Values

rep 61123456
3/012
b 410123

Number of Observations Read | 72

Number of Observations Used | 72




Dependent Variable: Yield

ANOVA Assuming that A and B are both random effects

The ANOVA Procedure
Sum of
Source DF Squares | Mean Square | F Value | Pr > F
Model 16| 9137.02333 571.06396 11.97| <.0001
Error 55| 2623.49667 47.69994
Corrected Total | 71| 11760.52000
R-Square Coeff Var | Root MSE | Yield Mean
0.776923 20.00922 6.906514 34.51667
Source | DF| Anova SS| Mean Square | F Value | Pr>F
rep 51| 1847.900000 369.580000 7.75| <.0001
a 2| 3358.260833 1679.130417 35.20| <.0001
b 3| 1832.094444 610.698148 12.80| <.0001
a*b 6] 2098.768056 349.794676 7.33] <.0001

Error Term

Tests of Hypotheses Using the Anova MS for a*b as an

Source | DF| Anova SS| Mean Square | F Value | Pr>F
21 3358.260833 1679.130417 4.80| 0.0569
b 3| 1832.094444 610.698148 1.75| 0.2569




ANOVA Assuming that A and B are both random effects
The ANOVA Procedure

t Tests (LSD) for Yield

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom 6
Error Mean Square 349.7947
Critical Value of t 2.44691
Least Significant Difference 13.211

Means with the same letter
are not significantly
different.

t Grouping | Mean| N |a

A 43.750] 24| 1
A
A 32.354| 240

B 27.446| 24 |2




ANOVA Assuming that A and B are both random effects

The ANOVA Procedure

t Tests (LSD) for Yield

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom 6
Error Mean Square 349.7947
Critical Value of t 2.44691
Least Significant Difference 15.255

Means with the same letter
are not significantly
different.

t Grouping | Mean| N b
40.800| 181

38.139| 180

29.811| 182

> >

29.317| 1813




ANOVA Assuming that A and B are both random effects

The ANOVA Procedure

t Tests (LSD) for Yield

33.3166667 | 6.2062603

34.4333333| 7.1096179

31.8333333| 7.1432952

29.8333333 | 7.6028065

53.6166667 | 12.8095928

58.8666667 | 18.8470334

31.6500000| 3.8119549

30.8666667 | 5.2343736

27.4833333| 5.6015772

29.1000000| 5.4391176

25.9500000| 4.6804914

(=230 Bi= N o N B =) W o) N (Ko N B = N e N e N I = N e N e

27.2500000| 7.2312516




