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Set: Any well-defined collection of objects, These objects are
called members or elements of that set.

These members or elements usually written within this kind of
parentheses {  } to designate a set using one of these letters A, B, C, D,
... or if the number of sets are very big, then we usually use the letters
Ay, Ag, As, ... to designate our sets.

Examples of sets:
1) The set of all students in Math. course.
2} The football team in a university.
3) The set of all households in Amman.
4) The set of Integer numbers.

s e g gand b set Ao sanall of Dol 2B e B D
55 (A A panad 38 ida wilia gf dia Ll 005y o (= )5 elements
Y- RUNENPRITON I SR PR IS 1A PRSP LI P N i
Al Al 2o ppen o damaall 3o do peaa L (il
LDy e ponall Ay i s} 13 5 Lidas Lol el

Y 13 DA e iy W sabe aca il enall g yaiu b Cua
asYl e gana e Jalall § 4080 L 58 A S DY

:Methods for writing sets <l senall 408 (5 5h e L

1) Listing Method:

" if it is possible to specify all elements of a set, then, we can use this
method to describe the set by listing all the elements and enclosing the
list inside braces.
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The general form of listing the elements a; , a2, a3, ... , & inside
the set A, me have:

A={ar,a,8. ... 2}

where,a;,i=1,2,3,...,n are called members or elements of
the set.

We say that elemment a; is a member of (belongs to) the set A, and
write g € A.

for example, set A consists of the elements 1,2, 3. Then, we write
A={1,2,3},and 1€ A,2€ A, and3 € A.

2) Rule Method:

if it is not possible or in which it would be inconvenient to list all
members or elements of a particular set, Then, we can use what is called
the Rule ~ Method. In which, we have to specify and state a rule for
membership of the elements in the set.

For example to write the set of real numbers between the two
numbers a and b. Then, we use

A={x]a<x<b,whereaandb are reals}

3) Venn — Diagram:

this method is to present the set by a graph, this graph may be a
rectangular or a circle to designate the set and then specify all elements in
side this set. Also, this graph maybe the real line and all sets can be
presented by the specified points or intervals on this line.

The general form for Venn — Diagram may be:

1 2 3
A * % # or 1 2 3
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Write the set of Natural Numbers dmadall ¥32Y) de yena (58
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N de ganall Bidis N jaslls Apepgdall Sa0Y) e pandl
N={1,2,3,..}

Write the set of Integer Numbers Asssaall dae¥) de gana i)
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I={..,4,-3,-2,-1,0,1,2,3,4, ...}

Write the set of odd Naturals 4@l Lsadall Saed) e gena Sl
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A={1,3,5,7,..}
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‘Write the set of Naturals between 2 and 7
:gﬂ\su&u\zu&,j e gl Ao geaall oda AT
a) Both 2 and 7 are included in the set, say A, then:
A={2,3,4,5,6,7}
b) Both 2 and 7 are not included in the set, say B, then:
B={3,4,5,6}
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¢) 2 is included in the set, say C, but 7 is not, then:
C={2,3,45,6}
d) 7 is included in the set, say D, but 2 is not, then:
D={3,4,5,6,7}
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Write the set of Real Numbers 4iall 3221 4o jana i)
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R={x|-w0<x<oo}
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Write and graph the set of Reals between 2 and 7
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a) 2 and 7 are included in the set, say A; , then:
Ay ={x|2<x<7,xisreal number }
b) 2 and 7 not included in the set, say A, , then:

Ap={x]2<x<7,xis real number }
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¢} 2 is included in the set, say Az, but 7 is not, then:
As={x]2<x<7,xisreal number }
d) 7 is included in the set, say Ag, but 2 is not, then:

As={x|2<x<7,xis real number }
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Identity Set: A set that contains only one element such as A = {1} ,B =
{0}, and C = {c}

Empty Set: A set that contains no elements, denoted by ¢ , which is also
called the null set, Such as

A = {x|xis an integer between 7 and 8}

B = { x| x is a real number and x* = -1}

Universal Set: A set that contains all subsets and all elements of a given
study, denoted by U or S. This set is also called a Sample
Space, denoted by Q.

Subset: A set A is said to be a subset of another set B if every element of
A is also an element of B. In such a case, we write A C B,
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This relationship can be presented by Venn-diagram as follows:

1©

Note: From the above definitions, we can notice that:

U

1) Any set A is a subset of the Universal set U
Thatis , AU

2) Any set A is a subset of itself.
Thatis, A CA

3) An empty set § is a subset of any set A,
Thatis, 0 C A

Therefore, we can say, in general,  CAC U
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1) Intersection: The intersection of two sets A and B, denoted by
A M B is the set that contains all elements in A and in
B presented as

U
(@
2) Unijon: The union of two sets A and B, denoted by A U B is the

set that contains all elements that are in A or in B or in
both presented as:

6]

3) Complement: The complement of a set A, denoted by A or A,
is the set of all elements that are in U, but not is A
presented as:

4) Equal: Two sets A and B are said to be equal if AC B and
B C A. In such a case we write A =B,

5) Mutually Exclusive: Two sets A and B are said to be mutually

exclusive (or disjoint) if and only if AN B = ¢
presented as:
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DAUA=A , ANA=A

2AUB=BUA R ANnB=BnNA
Commutative laws ol dpals aniy

NAVBUCO=(AuB)LC
ANBNC)=(AnBINC

Associative laws &L dpals  jasily

HANBUO=ANBUANC
AUBNC=AVBINAUC)

Distributive laws g5l dpals ceutiy
5YAuU=U s AUugp=A
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