Soil Colloids and Cation Exchange Capacity

Chapter 8 p. 316-362

What should you know?

- Soil colloids what they are, their properties
- Differences between soil clay minerals
- Properties of humic substances (active organic matter)
- Cation exchange and CEC

Colloids

- Very small, chemically surface reactive particles
- Usually < 1 µm diameter
- Very high surface area per unit mass (specific surface area)
- Common examples of colloidal suspensions
 - Jello
 - Milk

Characteristics of Soil Colloids

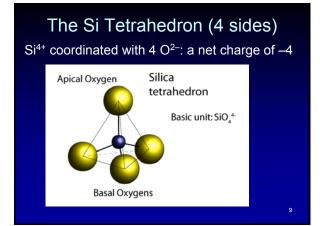
- High surface area
 - Smectites & vermiculites: 1 g = 800 m²
 - Range: 10 800 m² g⁻¹
- Electrically charged surface
 - Usually net negative surface charge
 - In low pH soils dominated by sesquioxides, allophane, imogolite, surfaces may be net positive

Types of Soil Colloids

- · Silicate clays
 - Aluminosilicate minerals
 - Crystalline and poorly crystalline types
- · Humic substances
- Al and Fe oxides, hydroxides, and oxyhydroxides
 - Sesquioxides
 - Amorphous (gel-like), poorly crystalline

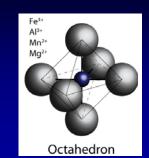
5

What is Clay?

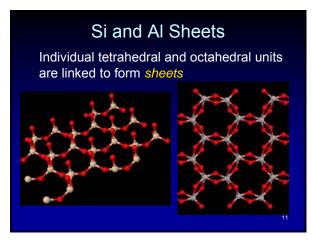

- Soil particle-size
- -<0.002 mm (< 2 μm)
- Soil textural class
- A class of silicate minerals
 - The clay minerals: phyllosilicates or layer silicates or sheet silicates

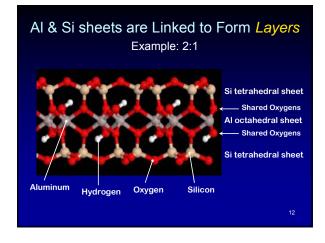
Origin of the Clay Minerals

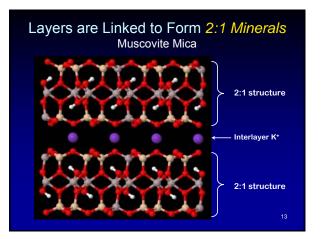
- Secondary minerals formed by the:
 - Alteration of primary phyllosilicates (structure is inherited)
 - Modification of other complex silicates (e.g., feldspars, amphiboles, pyroxenes) by neoformation
- They may form
 - In place: *authigenic* (*pedogenic*)
 - Deposited prior to soil formation: detrital

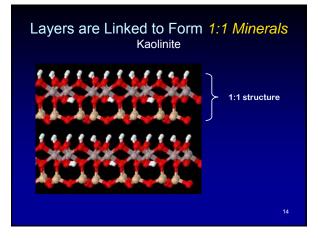

Layer Silicate Clay Minerals

- Aluminosilicate minerals
- Crystalline structure
- Structural units
 - Silicon (Si4+) tetrahedral units
 - Aluminum (Ål³⁺), magnesium (Mg²⁺), and iron (Fe²⁺/Fe³⁺) octahedral units
 - Individual units linked into SHEETS
 - Sheets are combined in LAYERS
 - Many layers = crystal structure or CLAY MICELLE




The AI & Mg Octahedron (8 sides)


 Al^{3+} (or Mg²⁺) coordinated with 6 OH⁻: a net charge of -3 (or -4)



Aluminum and magnesium octahedra Basic unit: Al(OH)₆^{3–} or Mg(OH)₆^{4–}

Sources of Charge on Clay Minerals

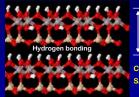
pH dependent charge (charge is a function of solution chemistry)

- Dissociable –OH groups (weak acids)
- As pH increases, deprotonation increases
- Occurs at crystal edges
 - $\equiv SiOH^0 \rightarrow \equiv SiO^- + H^+$
 - $\equiv AIOH^0 \rightarrow \equiv AIO^- + H^+$
 - \equiv AIOH⁰ + H⁺ → \equiv AIOH₂⁺
- Surfaces that develop pH-dependent charge are called amphoteric if they can be either + or depending on pH

15

Source of Charge on Clay Minerals

- Permanent (structural) charge: from isomorphic substitution
- Occurs in 2:1 minerals when they form
- · One element substitutes for another of similar size
 - Al³⁺ substitutes for Si⁴⁺ in the tetrahedral layer Fe²⁺ or Mg²⁺ substitutes for Al³⁺ in the octahedral layer
- Because the substituting ion has lesser charge than the true charge-neutralizing ion, there is charge imbalance


Classes of Silicate Clay Minerals

- Many different types: differentiation generally based on tetra:octa layer ratio and extent of isomorphic substitution (layer charge)
- 1:1 clays (no layer charge) Kaolinites
- 2:1 non-expanding clays (high layer charge)
 - Micas (muscovite and biotite)
 - Illite
 - Chlorites
- 2:1 expanding clays
 - Intermediate layer charge: vermiculites

- Low layer charge: smectites

1:1 Phyllosilicates (Secondary)

- Ratio of Si to Al sheets is 1:1
- 1:1 layer attached to adjacent 1:1 layers by Hbonds (non-expansive)
 - No H₂O in the interlayer: kaolinite, Al₂Si₂O₅(OH)₄
 H₂O in the interlayer: halloysite, Al₂Si₂O₅(OH)₄ 2H₂O

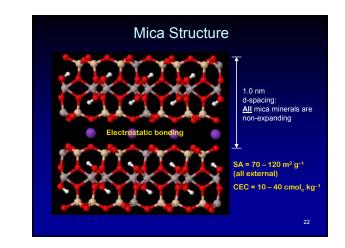
d-spacing = 0.71 - 0.73 nm

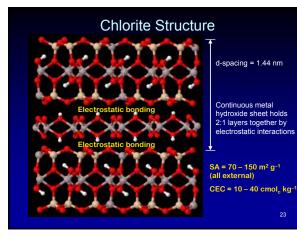
16

CEC = 1 - 10 cmol, kg⁻¹ $SA = 10 - 20 \text{ m}^2 \text{ g}^{-1}$ (all external) 18

1:1 Characteristics

- Low surface area: 10 to 20 m² g⁻¹
- · Low water holding capacity
- Pedogenic and common to moist, warm, weathered soils (kaolinite is present in almost all soils; halloysite present in volcanic soils)
- Low negative charge
 - Mostly pH dependent
 - Very little isomorphic substitution
 - < 10 cmol_c kg⁻¹

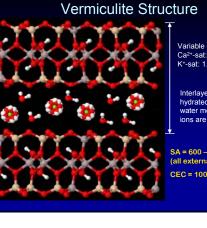

2:1 Non-Expanding (Primary)


- Organization
 - Ratio of Si to Al sheets is 2:1
 - 2:1 layer attached to adjacent 2:1 layers by electrostatic forces (bridging cations)
 - K⁺ ions in the interlayer: *mica* minerals (& *illite*): *muscovite*, KAI₂(Si₃AI)O₁₀(OH)₂; *biotite*, K(Mg,Fe^{II})₃(Si₃AI)O₁₀(OH)₂
 - Mineral sheets in the interlayer: *chlorite* minerals, (LiAl₂)(OH)₆•Al₂(Si₃Al)O₁₀(OH)₂

20

2:1 Non-Expanding (Primary)

- · Characteristics
 - Micas are primary minerals; illite is secondary; chlorites may be primary or secondary
 - Moderate surface area, 70 to 150 m² g⁻¹
 - Low water holding capacity, non-swelling
 - Extensive isomorphic substitution, but minerals are non-expansive (no access)
 - Surface charge from isomorphic substitution of Al³⁺ for Si⁴⁺ in Si-sheets and pH-dependent edge sites: 10 to 40 cmol_c kg⁻¹


2:1 Expanding: Vermiculites

Organization

- Ratio of Si to Al sheets is 2:1
- 2:1 layer attached to adjacent 2:1 layers by electrostatic forces (bridging exchangeable hydrated cations)
- Moderate layer charge from isomorphic substitution of Al³⁺ for Si⁴⁺ in Si-sheets (0.6 to 0.9 per formula)
- Structure inherited from mica minerals
- K_{0.8}(Al, Mg, Fe)₂(Si_{3.2}Al_{0.8})O₁₀(OH)₂
- Most species are high in Mg & Fe

2:1 Expanding: Vermiculites

- Characteristics
 - Vermiculites are secondary minerals
 - Extensive surface area, 600 to 800 m² g⁻¹
 - Intermediate water holding, intermediate swelling
 - Extensive surface charge 100 to 200 cmol, kg⁻¹

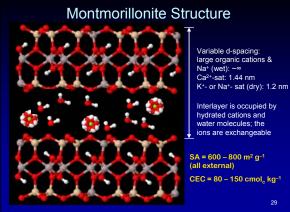
Variable d-spacing: Ca²⁺-sat: 1.44 nm K⁺-sat: 1.0 nm

Interlayer is occupied by hydrated cations and water molecules; the ions are exchangeable

SA = 600 - 800 m² g⁻¹ (all external CEC = 100 - 200 cmol_c kg⁻¹

26

2:1 Expanding: Smectites


Organization

- Ratio of Si to Al sheets is 2:1
- 2:1 layer attached to adjacent 2:1 layers by electrostatic forces (bridging exchangeable hydrated cations)
- Low layer charge from isomorphic substitution of Mg²⁺ for Al³⁺ in Al-sheets (0.2 to 0.6 per formula)
- Structure inherited from illite or vermiculite, or formed pedogenically by neoformation processes

2:1 Expanding: Smectites

Characteristics

- Smectites are secondary minerals
- Smectites are a chemically and structurally complex group of minerals \rightarrow numerous species
- Common species: montmorillonite Ca_{0.2}(Al_{1.6}Mg_{0.4})Si₄O₁₀(OH)₂
- Extensive surface area, 600 to 800 m² g⁻¹
- Large water holding, extensive swelling
- Moderate surface charge 80 to 150 $\rm cmol_{c}~kg^{-1}$

Variable d-spacing: large organic cations & Na⁺ (wet): ~∞ -sat: 1.44 nm

Interlayer is occupied by hydrated cations and water molecules; the ions are exchangeable

 $SA = 600 - 800 \text{ m}^2 \text{ a}^{-1}$ (all external) CEC = 80 - 150 cmol_e kg⁻¹

29

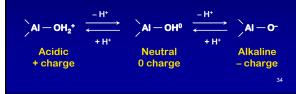
Allophane and Imogolite

- Mixtures of silica and alumina that are poorlycrystalline to microcrystalline
- Allophane: AI_2O_3 •(SiO₄)_{1–2}•2.5-3H₂O Imogolite: $AI_2SiO_3(OH)_4$
- Common in young volcanic (andic) materials Insufficient weathering
 - High soluble silica concentrations
- pH dependent charge
- Exchange capacity - CEC: 10 to 40 cmol, kg⁻¹ at pH 7
 - AEC: 5 to 30 cmol kg⁻¹ at pH 4

Sesquioxides - Al and Fe Oxides

- As weathering continues:
 - Base cations and H₄SiO₄ are leached
 - Soils become acidic, further enhancing weathering processes
- After extensive weathering
 - Low solubility (stable minerals) sesquioxides
 - Resistant primary oxides and silicates

Sesquioxides - AI and Fe Oxides


- Sesquioxides
 - Gibbsite [AI(OH)₃]: ubiquitous in soils, particularly those that are highly weathered (Oxisols & Ultisols) and in Al-rich soils (Andisols)
 - Goethite [FeOOH]: the most common hydrous Fe oxide (found in all soils), particularly in cool, moist climates
 - Hematite $[Fe_2O_3]$: found in almost all soils, favored in warm, dry climates and in the tropics and subtropics

Recalcitrant (Remnant) Minerals

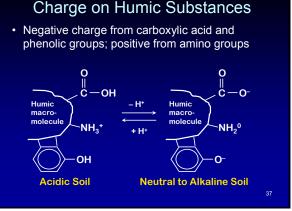
- · Found in all soils; concentrated in highly weathered soils
 - Titanium oxides
 - Rutile [TiO₂]
 - Anatase [TiO₂]
 - Ilmenite [FeTiO₃]
 - Corundum [Al₂O₃]
 - Zircon [ZrSiO₄]

Charge on Sesquioxides

- pH dependent
- · In acid soils, may have positive charge
- Surface charge depends on crystallinity
- Well-crystalline: CEC ~ 1 cmol_c kg⁻¹, AEC ~ 3 cmol_c kg⁻¹
- Poorly-crystalline: CEC ~ 10 100 cmol_c kg⁻¹
 - AEC ~ 30 300 cmol, kg⁻¹

Weathering and Clays

- Arid to subhumid 2:1 expanding are common (intermediate weathering stage)
- Weathering of micas forms 2:1 non-expanding illite or expanding vermiculite
- · Poor drainage favors smectite formation
- Continued weathering strips out silica & bases
- High precipitation & good drainage favors decomposition of 2:1 clays and formation of 1:1 clays
- Very warm with high precipitation favors continued dissolution and formation of simple Fe and AI sesquioxides


Organic Colloids – Humic Substances

- · Stable organic matter left after decomposition of plant and animal detritus
- Dark brown to black, solubility in water is variable (fulvates are soluble; humins and humates not so much)
- Very high reactivity, mostly negative charge pH dependent

 - CEC = 60 to 300 cmol_c kg⁻¹ SOM at pH 7; may account for 25 % to 90 % of the CEC of mineral soils
- · High water holding capacity
- Very important relative to clays (can mask properties of clays)

31

33

Cation Exchange

- Soil colloids have negative charge
 pH dependent = variable charge
 - Isomorphic substitution = permanent charge
- Cations from the soil solution must satisfy this charge so that mineral and organic surfaces appear to be charge neutral

Basic Concepts

- Cations (\rightarrow metals)
 - Positively charged ions
 - Al³⁺, Ca²⁺, Mg²⁺, K⁺, Na⁺, NH₄⁺, H⁺, etc.
- Anions (→ ligands)
 - Negatively charged ions
 - SO₄^{2–}, NO₃[–], H₂PO₄[–], HPO₄^{2–}, Cl[–], OH[–], etc.
- Cation exchange sites
 - Negatively charged sites on clay and humic colloids
 Cations are retained at these sites by electrostatic
 - forces

Basic Cation Exchange Concepts

- Adsorbed cations can be replaced by other, competing cations
- Law of Mass Action and Le Châtelier's principle are obeyed (large quantity of one cation can displace different cations from sites)
- Exchange reactions are reversible, rapid, and stoichiometric with respect to charge 2{K⁺-Soil} + Ca²⁺ → 2K⁺ + Ca²⁺-(Soil)₂
- Ease of cation displacement is a function of cation size and charge

Chemistry concepts

- 1 mole = 6.022 × 10²³ entities (e.g., atoms)
- 1 cmol = mol ÷ 100
- Molecular weight (MW) = mass (g) of a substance in 1 mol
 - Ca \approx 40 g mol⁻¹, K \approx 39 g mol⁻¹,
 - AI ≈ 27 g mol⁻¹, Mg ≈ 24 g mol⁻¹,
 - Na ≈ 23 g mol⁻¹, H ≈ 1 g mol⁻¹
- So, 1 mol Ca = 40 g; 1 cmol Ca = 0.4 g

39

What is cmol_c?

- Units of CEC are cmol_c kg⁻¹: centimoles of charge per kilogram of soil
- 1 cmol K⁺ = 1 cmol_c
- 1 cmol Ca²⁺ = 2 cmol_c
- 1 cmol $AI^{3+} = 3 cmol_{c}$
- A soil with a CEC of 10 cmol_c kg⁻¹ would require:

10 cmol kg⁻¹ of K⁺, or 5 cmol kg⁻¹ of Ca²⁺, or 3.3 cmol kg⁻¹ of Al³⁺

to neutralize the soil exchange complex

42

Factors Affecting Cation Adsorption

- · Soil solution composition
 - The exchange complex reflects soil solution composition: Ca²⁺ dominates in soil solutions, also dominates exchange complex
- Soil pH
 - Acid soils: higher Al³⁺ and H⁺ in solution and on exchange complex
 - Al is actually present as Al(OH)₂⁺
 - Neutral to alkaline (pH > 6.5): low Al³⁺ and H⁺, high Ca²⁺, Mg²⁺, K⁺, & Na⁺

43

Factors Affecting Cation Adsorption

- Strength of adsorption increases as:
 - Cation valence (z_c) increases
 - Hydrated size (R_{hyd}) decreases
 - Strength of negative charge on colloid (z_{soil}) increases
- Force of attraction of a cation to the soil exchange complex obeys Coulomb's Law:

Factors Affecting Cation Adsorption

- The relative replaceability of exchangeable cations (ease of removal) is described by a *lyotropic series*
- For monovalent cations:
 Li⁺ ≈ Na⁺ > K⁺ ≈ NH₄⁺ > Rb⁺ > Cs⁺
- For divalent cations:
 Mq²⁺ > Ca²⁺ > Sr²⁺ ≈ Ba²⁺
- Monovalent cations are not necessarily easier to displace then divalent cations

Exchange Complex Composition

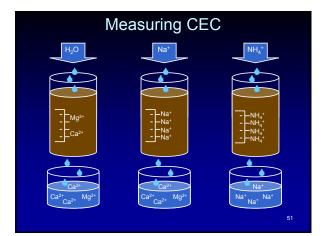
	cmol _c kg ⁻¹		
lon	pH < 6	pH > 7	
Ca ²⁺	3.80	25.18	
Mg ²⁺	1.65	10.06	
Na+	0.25	1.21	
K+	0.23	0.74	
Al ³⁺	8.76	0	

Importance?

- Storage of plant nutrients
 Major source of K, Mg, Ca
- Buffering Capacity
 - Moderates change in solution pH and nutrient concentrations (high CEC requires high limestone to increase pH of acid soils)
- Adsorption of trace metals
 Cd²⁺, Pb²⁺, Ni²⁺, Cu²⁺, Zn²⁺, others
- Adsorption of cationic pesticides, other organic compounds

47

Cation Exchange Capacity – CEC


- Definition: moles of exchangeable cation charge adsorbed per unit mass of soil
- Units: centimoles of positive charge from cations per kilogram of soil: $cmol_c kg^{-1}$
- Recall that ½ cmol Ca²⁺, ⅓ cmol Al³⁺, or 1 cmol K⁺ or Na⁺ will neutralize 1 cmol_c of soil charge

8

Order	cmol _c kg ⁻¹	Order	cmol _c kg ⁻¹
Alfisols	15.4	Mollisols	24.0
Andisols	30.9	Oxisols	7.6
Aridisols	17.8	Spodosols	26.7
Entisols	19.9	Ultisols	8.9
Inceptisols	21.1	Vertisols	50.1

Measuring CEC

- Soil is rinsed of *soluble* cations
- Soil exchange complex is saturated with an index cation, such as Na⁺
 - Na⁺ replaces native cations, which are rinsed away
- The Na⁺-saturated soil is treated with a second index cation, such as $\rm NH_4^+$
 - NH₄⁺ replaces the Na⁺
- The displaced $\ensuremath{\mathsf{Na}^{\scriptscriptstyle+}}$ is measured
- The cmol of displaced Na⁺ per kg of soil is the CEC

Effect of Texture on CEC

- Sands: 1 to 5 cmol_c kg⁻¹
- Sandy loams: 5 to 10 cmol_c kg⁻¹
- Loams and silt loams: 5 to 15 cmol_c kg⁻¹
- Clay loams: 15 to 30 cmol_c kg⁻¹
- Clays: > 30 cmol_c kg⁻¹
- Why differences?
- What does this mean for soil properties?

Estimating CEC

- Measure or estimate % clay and % SOM
- Assign each component an average CEC

 Montmorillonite = 100 cmol_c kg⁻¹
- Convert CEC of component from $cmol_{c}~kg^{-1}$ to $cmol_{c}~\%^{-1}$
 - 1 kg mont. clay = 100 cmol_{c}
 - 100 % mont. clay = 100 cmol_{c}
 - 1 % mont. clay = 1 cmol_c, or 1 cmol_c $\%^{-1}$ mont.
- Multiply mineral CEC/% by the actual % in soil
- · Add all components

5

Example

- Soil has 2 % SOM, 20 % montmorillonite, 10 % illite
- SOM = 200 cmol_c/kg = 2 cmol_c/%
- mont. = $100 \text{ cmol}_{c}/\text{kg} = 1 \text{ cmol}_{c}/\%$
- illite = $40 \text{ cmol}_{c}/\text{kg} = 0.4 \text{ cmol}_{c}/\%$
- CEC = (2% × 2 cmol_c/%) +
 - (20% × 1 cmol_c/%) +
 - (10% × 0.4 cmol_c/%)
- CEC = 28 cmol_c/kg soil

CEC Calculations

- Assume soil with CEC = $20 \text{ cmol}_{c}/\text{kg}$
 - Ca-saturation = 45%
 - Mg-saturation = 20%
 - K-saturation = 10%
 - Al-saturation = 25%
- How many kg of Ca per hectare-15 cm of soil?

CEC Calculations

- $\text{cmol}_{c}/\text{kg}$ as Ca^{2+} = 20 $\text{cmol}_{c}/\text{kg} \ge 0.45$ = 9 cmol_{c}
- 9 cmol_c (Ca²⁺)/kg × 0.2 g Ca/cmol_c = 1.8 g Ca
- 1 hectare (ha)-15 cm = 2×10^6 kg soil

 $\frac{\text{kg Ca}}{\text{ha} - 15\text{cm}} = \frac{9 \text{ cmol}_{c} \text{ Ca}}{\text{kg soil}} \times \frac{0.2 \text{ g Ca}}{\text{cmol}_{c} \text{ Ca}} \times \frac{2 \times 10^{6} \text{ kg}}{\text{ha} - 15 \text{ cm}} \times \frac{\text{kg Ca}}{1000 \text{ g Ca}}$ $\frac{\text{kg Ca}}{\text{ha} - 15 \text{ cm}} = \frac{3600 \text{ kg Ca}}{\text{ha} - 15 \text{ cm}} (\text{exchangeable Ca}^{2+} \text{ only})$